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FIXED POINT THEOREM IN L∗M-FUZZY METRIC SPACES
FOR TWO MAPS

Jong Kyu Kim, S. Sedghi and N. Shobe

Abstract. In this paper, we give some new definitions of L∗M-fuzzy met-

ric spaces and we prove a common fixed point theorem for two mappings

in complete L∗M-fuzzy metric spaces. We get some improved versions of
several fixed point theorems in complete L∗M-fuzzy metric spaces.

1. Introduction and preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [23] in 1965.
Since then, to use this concept in topology and analysis many authors have
expansively developed the theory of fuzzy sets and application. George and
Veeramani [11] and Kramosil and Michalek [14] have introduced the concept
of fuzzy topological spaces induced by fuzzy metric which have very important
applications in quantum particle physics particularly in connections with both
string and E-infinity theory which were given and studied by El Naschie [6, 7,
8, 10, 20]. Many authors [13, 16, 18] have proved fixed point theorem in fuzzy
(probabilistic) metric spaces. Vasuki [21] obtained the fuzzy version of common
fixed point theorem which had extra conditions. In fact, Vasuki proved fuzzy
common fixed point theorem by a strong definition of Cauchy sequence (see
Note 3.13 and Definition 3.15 of [11] also [19, 22]).

In this paper, we prove a common fixed point theorem in fuzzy metric spaces
for arbitrary t-norms and modified definition of Cauchy sequence in George
and Veeramani’s sense. There have been a number of generalizations of metric
spaces. One such generalization is generalized metric space or D-metric space
initiated by Dhage [9] in 1992. He proved some results on fixed points for a
self-map satisfying a contraction for complete and bounded D-metric spaces.
Rhoades [15] generalized Dhage’s contractive condition by increasing the num-
ber of factors and proved the existence of unique fixed point of a self-map in
D-metric space. Recently, motivated by the concept of compatibility for met-
ric space, Singh and Sharma [17] introduced the concept of D-compatibility of
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maps in D-metric space and proved some fixed point theorems using a contrac-
tive condition.

In what follows N the set of all natural numbers, and R+ the set of all
positive real numbers.

Definition 1.1. Let X be a nonempty set. A generalized metric (or D-metric)
on X is a function: D : X3 −→ R+ that satisfies the following conditions for
each x, y, z, a ∈ X.

(1) D(x, y, z) ≥ 0,
(2) D(x, y, z) = 0 if and only if x = y = z,
(3) D(x, y, z) = D(p{x, y, z}) (symmetry), where p is a permutation func-

tion,
(4) D(x, y, z) ≤ D(x, y, a) +D(a, z, z).

The pair (X,D) is called a generalized metric (or D-metric) space.

It is easy to show that the following function D are D-metric.
(a) D(x, y, z) = max{d(x, y), d(y, z), d(z, x)}.
(b) D(x,y,z)=d(x,y)+d(y,z)+d(z,x),

where d is the ordinary metric on X.
(c) If X = Rn then we define

D(x, y, z) = (||x− y||p + ||y − z||p + ||z − x||p)
1
p

for every p ∈ R+.
(d) If X = R+ then we define

D(x, y, z) =
{

0 if x = y = z,
max{x, y, z} otherwise.

Remark 1.2. Let D be a D-metric. Then we have D(x, x, y) = D(x, y, y).
Since

(i) D(x, x, y) ≤ D(x, x, x) +D(x, y, y) = D(x, y, y)
and

(ii)D(y, y, x) ≤ D(y, y, y) +D(y, x, x) = D(y, x, x),
we get D(x, x, y) = D(x, y, y),

Let (X,D) be a D-metric space. For r > 0 define

BD(x, r) = {y ∈ X : D(x, y, y) < r}.

Example 1.3. Let X = R and D(x, y, z) = |x − y| + |y − z| + |z − x| for all
x, y, z ∈ R. Then

BD(1, 2) = {y ∈ R : D(1, y, y) < 2} = {y ∈ R : |y − 1|+ |y − 1| < 2}
= {y ∈ R : |y − 1| < 1} = (0, 2).

Definition 1.4. Let (X,D) be a D-metric space and A ⊂ X.
(1) If for every x ∈ A there exist r > 0 such that BD(x, r) ⊂ A, then A is

called open subset of X.
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(2) A is said to be D-bounded if there exists r > 0 such that D(x, y, y) < r
for all x, y ∈ A.

(3) A sequence {xn} in X converges to x if and only if D(xn, xn, x) =
D(x, x, xn) → 0 as n → ∞. That is for each ε > 0 there exist n0 ∈ N
such that

∀n ≥ n0 =⇒ D(x, x, xn) < ε. (∗)
This is equivalent with, for each ε > 0 there exist n0 ∈ N such that

∀n,m ≥ n0 =⇒ D(x, xn, xm) < ε. (∗∗)

Suppose that (*) holds. Then

D(xn, xm, x) = D(xn, x, xm) ≤ D(xn, x, x) +D(x, xm, xm) <
ε

2
+
ε

2
= ε.

Conversely, set m = n in (∗∗) we have D(xn, xn, x) < ε.
(4) Sequence {xn} in X is called a Cauchy sequence if for each ε > 0, there

exits n0 ∈ N such that D(xn, xn, xm) < ε for each n,m ≥ n0. The D-metric
space (X,D) is said to be complete if every Cauchy sequence in X is convergent.

Let τ be the set of all open subsets of X. Then τ is a topology on X.

Lemma 1.5. Let (X,D) be a D-metric space. If r > 0, then ball BD(x, r) with
center x ∈ X and radius r is open.

Proof. Let z ∈ BD(x, r). Then D(x, z, z) < r. If set D(x, z, z) = δ and
r′ = r−δ then we prove that BD(z, r′) ⊆ BD(x, r). Let y ∈ BD(z, r′). Then, by
triangular inequality we have D(x, y, y) = D(y, y, x) ≤ D(y, y, z)+D(z, x, x) <
r′ + δ = r. Hence BD(z, r′) ⊆ BD(x, r). That is ball BD(x, r) is open. �

Lemma 1.6. Let (X,D) be a D-metric space. If the sequence {xn} in X
converges to x, then it is unique.

Proof. Let xn −→ y and y 6= x. Since {xn} converges to x and y, for each
ε > 0 there exist

n1 ∈ N such that for every n ≥ n1 =⇒ D(x, x, xn) <
ε

2
and

n2 ∈ N such that for every n ≥ n2 =⇒ D(y, y, xn) <
ε

2
.

If set n0 = max{n1, n2}, then for every n ≥ n0 by triangular inequality we
have

D(x, x, y) ≤ D(x, x, xn) +D(xn, y, y) <
ε

2
+
ε

2
= ε.

Hence D(x, x, y) = 0 is a contradiction. So, x = y. �

Lemma 1.7. Let (X,D) be a D-metric space. If the sequence {xn} in X is
convergent to x, then it is a Cauchy sequence.
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Proof. Since xn −→ x for each ε > 0 there exists

n1 ∈ N such that for every n ≥ n1 =⇒ D(xn, xn, x) <
ε

2

and

n2 ∈ N such that for every m ≥ n2 =⇒ D(x, xm, xm) <
ε

2
.

If set n0 = max{n1, n2}, then for every n,m ≥ n0 by triangular inequality we
have

D(xn, xn, xm) ≤ D(xn, xn, x) +D(x, xm, xm) <
ε

2
+
ε

2
= ε.

Hence sequence {xn} is a Cauchy sequence. �

Definition 1.8. A 3-tuple (X,M, ∗) is called a M-fuzzy metric space if X is
an arbitrary (non-empty) set, ∗ is a continuous t-norm, and M is a fuzzy set
on X3 × (0,∞), satisfying the following conditions for each x, y, z, a ∈ X and
t, s > 0,

(1) M(x, y, z, t) > 0,
(2) M(x, y, z, t) = 1 if and only if x = y = z,
(3) M(x, y, z, t) = M(p{x, y, z}, t) (symmetry), where p is a permutation

function,
(4) M(x, y, a, t) ∗M(a, z, z, s) ≤M(x, y, z, t+ s),
(5) M(x, y, z, ·) : (0,∞) −→ [0, 1] is continuous.

Remark 1.9. Let (X,M, ∗) be a M-fuzzy metric space. We prove that for
every t > 0, M(x, x, y, t) =M(x, y, y, t). Because for each ε > 0 by triangular
inequality we have

(i) M(x, x, y, ε+ t) ≥M(x, x, x, ε) ∗M(x, y, y, t) =M(x, y, y, t),
(ii) M(y, y, x, ε+ t) ≥M(y, y, y, ε) ∗M(y, x, x, t) =M(y, x, x, t).

By taking limits of (i) and (ii) when ε −→ 0, we obtain M(x, x, y, t) =
M(x, y, y, t).

Let (X,M, ∗) be aM-fuzzy metric space. For t > 0, the open ballBM(x, r, t)
with center x ∈ X and radius 0 < r < 1 is defined by

BM(x, r, t) = {y ∈ X :M(x, y, y, t) > 1− r}.

A subset A of X is called open set if for each x ∈ A there exist t > 0 and
0 < r < 1 such that BM(x, r, t) ⊆ A.

A sequence {xn} in X converges to x if and only if M(x, x, xn, t) −→ 1 as
n −→ ∞, for each t > 0. It is called a Cauchy sequence if for each 0 < ε < 1
and t > 0, there exist n0 ∈ N such that M(xn, xn, xm, t) > 1 − ε for each
n,m ≥ n0.

The M-fuzzy metric (X,M, ∗) is said to be complete if every Cauchy se-
quence is convergent.
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Example 1.10. Let X is a nonempty set and D is the D-metric on X. Denote
a ∗ b = a · b for all a, b ∈ [0, 1]. For each t ∈]0,∞[, define

M(x, y, z, t) =
t

t+D(x, y, z)

for all x, y, z ∈ X. It is easy to see that (X,M, ∗) is a M-fuzzy metric space.

Lemma 1.11. Let (X,M, ∗) is a fuzzy metric space. If we define M : X3 ×
(0,∞) −→ [0, 1] by

M(x, y, z, t) = M(x, y, t) ∗M(y, z, t) ∗M(z, x, t)

for every x, y, z in X, then (X,M, ∗) is a M-fuzzy metric space.

Proof. (1) It is easy to see that for every x, y, z ∈ X,M(x, y, z, t) > 0, ∀t > 0.
(2) M(x, y, z, t) = 1 if and only if M(x, y, t) = M(y, z, t) = M(z, x, t) = 1 if

and only if x = y = z.
(3) M(x, y, z, t) =M(p{x, y, z}, t), where p is a permutation function.

(4)M(x, y, z, t+ s) =M(x, y, t+ s) ∗M(y, z, t+ s) ∗M(z, x, t+ s)
≥M(x, y, t)∗M(y, a, t)∗M(a, z, s)∗M(z, a, s)∗M(a, x, t)
=M(x, y, a, t) ∗M(a, z, s) ∗M(z, a, s) ∗M(z, z, s)
=M(x, y, a, t) ∗M(a, z, z, s).

�

Lemma 1.12. Let (X,M, ∗) be a M-fuzzy metric space. Then M(x, y, z, t) is
nondecreasing with respect to t, for all x, y, z in X.

Proof. By Definition 1.8(4), for each x, y, z, a ∈ X and t, s > 0 we haveM(x, y,
a, t) ∗ M(a, z, z, s) ≤ M(x, y, z, t + s). If set a = z we get M(x, y, z, t) ∗
M(z, z, z, s) ≤M(x, y, z, t+ s), that is M(x, y, z, t+ s) ≥M(x, y, z, t). �

Definition 1.13. Let (X,M, ∗) be a M-fuzzy metric space. M is said to be
continuous function on X3 × (0,∞) if

lim
n→∞

M(xn, yn, zn, tn) =M(x, y, z, t),

for a sequence {(xn, yn, zn, tn)} in X3 × (0,∞) converges to a point
(x, y, z, t) ∈ X3 × (0,∞), i.e.,

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

zn = z and lim
n→∞

M(x, y, z, tn) =M(x, y, z, t).

Lemma 1.14. Let (X,M, ∗) be a M-fuzzy metric space. Then M is contin-
uous function on X3 × (0,∞).

Proof. Let x, y, z ∈ X and t > 0, and let {(x′n, y′n, z′n, t′n)} be a sequence in X3×
(0,∞) that converges to (x, y, z, t). Since {(M(x′n, y

′
n, z
′
n, t
′
n))} is a sequence

in (0, 1], there is a subsequence {(xn, yn, zn, tn)} of sequence {(x′n, y′n, z′n, t′n)}
such that sequence {(M(xn, yn, zn, tn))} converges to some point of [0, 1].



202 KIM, SEDGHI AND SHOBE

Fix δ > 0 such that δ < t
2 . Then, there is n0 ∈ N such that |t− tn| < δ for

every n ≥ n0. Hence,

M(xn, yn, zn, tn)

≥M(xn, yn, zn, t− δ)

≥M(xn, yn, z, t−
4δ
3

) ∗M(z, zn, zn,
δ

3
)

≥M(xn, z, y, t−
5δ
3

) ∗M(y, yn, yn,
δ

3
) ∗M(z, zn, zn,

δ

3
)

≥M(z, y, x, t− 2δ) ∗M(x, xn, xn,
δ

3
) ∗M(y, yn, yn,

δ

3
) ∗M(z, zn, zn,

δ

3
)

and
M(x, y, z, t+ 2δ)

≥M(x, y, z, tn + δ)

≥M(x, y, zn, tn +
2δ
3

) ∗M(zn, z, z,
δ

3
)

≥M(x, zn, yn, tn +
δ

3
) ∗M(yn, y, y,

δ

3
) ∗M(zn, z, z,

δ

3
)

≥M(zn, yn, xn, tn) ∗M(xn, x, x,
δ

3
) ∗M(yn, y, y,

δ

3
) ∗M(zn, z, z,

δ

3
),

for all n ≥ n0. By taking limits when n −→∞, we obtain

lim
n→∞

M(xn, yn, zn, tn) ≥M(x, y, z, t− 2δ) ∗ 1 ∗ 1 ∗ 1 =M(x, y, z, t− 2δ)

and

M(x, y, z, t+ 2δ) ≥ lim
n→∞

M(xn, yn, zn, tn)1 ∗ 1 ∗ 1 = lim
n→∞

M(xn, yn, zn, tn),

respectively. So, by continuity of the function t 7−→ M(x, y, z, t), we immedi-
ately deduce that

lim
n→∞

M(xn, yn, zn, tn) =M(x, y, z, t).

Therefore M is continuous on X3 × (0,∞). �

Lemma 1.15. Let (X,M, ∗) be a M-fuzzy metric space. If we define Eλ,M :
X3 → R+ ∪ {0} by

Eλ,M(x, y, z) = inf{t > 0 : M(x, y, z, t) > 1− λ}

for every λ ∈ (0, 1), then
(i) for each µ ∈ (0, 1) there exists λ ∈ (0, 1) such that

Eµ,M(x1, x1, xn) ≤ Eλ,M(x1, x1, x2) + Eλ,M(x2, x2, x3) + · · ·
+ Eλ,M(xn−1, xn−1, xn)

for any x1, x2, · · · , xn ∈ X.
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(ii) The sequence {xn} is convergent in M-fuzzy metric space (X,M, ∗) if
and only if Eλ,M(xn, xn, x) → 0. Also the sequence {xn} is Cauchy
sequence if and only if it is Cauchy with Eλ,M.

Proof. (i) For every µ ∈ (0, 1), we can find a λ ∈ (0, 1) such that

n︷ ︸︸ ︷
(1− λ) ∗ (1− λ) ∗ · · · ∗ (1− λ) ≥ 1− µ.

By triangular inequality, we have

M(x1, x1, xn, Eλ,M(x1, x1, x2) + Eλ,M(x2, x2, x3) + · · ·
+Eλ,M(xn−1, xn−1, xn) + nδ)

≥M(x1, x1, x2, Eλ,M(x1, x1, x2) + δ) ∗ · · ·
∗M(xn−1, xn−1, xn, Eλ,M(xn−1, xn−1, xn) + δ)

≥
n︷ ︸︸ ︷

(1− λ) ∗ (1− λ) ∗ · · · ∗ (1− λ)
≥ 1− µ,

for very δ > 0, which implies that

Eµ,M(x1, x1, xn) ≤ Eλ,M(x1, x1, x2) + Eλ,M(x2, x2, x3) + · · ·
+ Eλ,M(xn−1, xn−1, xn) + nδ.

Since δ > 0 is arbitrary, we have

Eµ,M(x1, x1, xn) ≤ Eλ,M(x1, x1, x2) + Eλ,M(x2, x2, x3) + · · ·
+ Eλ,M(xn−1, xn−1, xn).

(ii) Note that since M is continuous in its third item and

Eλ,M(x, x, y) = inf{t > 0 : M(x, x, y, t) > 1− λ}.

Hence, we have

M(xn, x, x, η) > 1− λ⇐⇒ Eλ,M(xn, x, x) < η

for every η > 0. �

Lemma 1.16. Let (X,M, ∗) be a M-fuzzy metric space. If

M(xn, xn, xn+1, t) ≥M(x0, x0, x1, k
nt)

for some k > 1 and for every n ∈ N. Then sequence {xn} is Cauchy.
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Proof. For every λ ∈ (0, 1) and xn, xn+1 ∈ X, we have

Eλ,M(xn, xn, xn+1) = inf{t > 0 : M(xn, xn, xn+1, t) > 1− λ}
≤ inf{t > 0 : M(x0, x0, x1, k

nt) > 1− λ}

= inf{ t
kn

> 0 : M(x0, x0, x1, t) > 1− λ}

=
1
kn

inf{t > 0 : M(x0, x0, x1, t) > 1− λ}

=
1
kn
Eλ,M(x0, x0, x1).

By Lemma 1.15, for every µ ∈ (0, 1) there exists λ ∈ (0, 1) such that

Eµ,M(xn, xn, xm)
≤ Eλ,M(xn, xn, xn+1) + Eλ,M(xn+1, xn+1, xn+2) + · · ·

+Eλ,M(xm−1, xm−1, xm)

≤ 1
kn
Eλ,M(x0, x0, x1) +

1
kn+1

Eλ,M(x0, x0, x1) + · · ·

+
1

km−1
Eλ,M(x0, x0, x1)

= Eλ,M(x0, x0, x1)
m−1∑
j=n

1
kj

−→ 0.

Hence the sequence {xn} is Cauchy. �

Lemma 1.17. ([5]) Consider the set L∗ and operation ≤L∗ defined by

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1},
(x1, x2) ≤L∗ (y1, y2)⇐⇒ x1 ≤ y1 and x2 ≥ y2, for every (x1, x2), (y1, y2) ∈ L∗.
Then (L∗,≤L∗) is a complete lattice.

Definition 1.18. ([1]) An intuitionistic fuzzy set Aζ,η in a universe U is an
object Aζ,η = {(ζA(u), ηA(u))|u ∈ U}, where, for all u ∈ U , ζA(u) ∈ [0, 1]
and ηA(u) ∈ [0, 1] are called the membership degree and the non-membership
degree, respectively, of u in Aζ,η, and furthermore they satisfy ζA(u)+ηA(u) ≤
1.

For every zi = (xi, yi) ∈ L∗ if ci ∈ [0, 1] such that
∑n
j=1 cj = 1, then it is

easy to show that

c1(x1, y1) + · · ·+ cn(xn, yn) =
n∑
j=1

cj(xj , yj) = (
n∑
j=1

cjxj ,

n∑
j=1

cjyj) ∈ L∗. (1.1)

We denote its units by 0L∗ = (0, 1) and 1L∗ = (1, 0). Classically, a triangular
norm ∗ = T on [0, 1] is defined as an increasing, commutative, associative
mapping T : [0, 1]2 −→ [0, 1] satisfying T (1, x) = 1 ∗ x = x, for all x ∈ [0, 1]. A
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triangular conorm S = � is defined as an increasing, commutative, associative
mapping S : [0, 1]2 −→ [0, 1] satisfying S(0, x) = 0 � x = x, for all x ∈ [0, 1].
Using the lattice (L∗,≤L∗), these definitions can be straightforwardly extended.

Definition 1.19. ([3, 4]) A triangular norm (t–norm) on L∗ is a mapping
T : (L∗)2 −→ L∗ satisfying the following conditions:

(1) (∀x ∈ L∗)(T (x, 1L∗) = x) (boundary condition)
(2) (∀(x, y) ∈ (L∗)2)(T (x, y) = T (y, x)) (commutativity)
(3) (∀(x, y, z) ∈ (L∗)3)(T (x, T (y, z)) = T (T (x, y), z)) (associativity)
(4) (∀(x, x′, y, y′) ∈ (L∗)4)(x ≤L∗ x′ and y ≤L∗ y′ =⇒ T (x, y) ≤L∗

T (x′, y′)) (monotonicity).

Definition 1.20. ([2]) A continuous t–norm T on L∗ is called continuous t–
representable if and only if there exist a continuous t–norm ∗ and a continuous
t–conorm � on [0, 1] such that, for all x = (x1, x2), y = (y1, y2) ∈ L∗,

T (x, y) = (x1 ∗ y1, x2 � y2).

Now define a sequence T n recursively by T 1 = T and

T n(x(1), · · · , x(n+1)) = T (T n−1(x(1), · · · , x(n)), x(n+1))

for n ≥ 2 and x(i) ∈ L∗.

Definition 1.21. ([3, 4]) A negator on L∗ is any decreasing mapping N :
L∗ −→ L∗ satisfying N (0L∗) = 1L∗ and N (1L∗) = 0L∗ . If N (N (x)) = x, for
all x ∈ L∗, then N is called an involutive negator. A negator on [0, 1] is a
decreasing mapping N : [0, 1] −→ [0, 1] satisfying N(0) = 1 and N(1) = 0. Ns
denotes the standard negator on [0, 1] defined as, for all x ∈ [0, 1], Ns(x) = 1−x.

Definition 1.22. Let M,N are fuzzy sets from X3 × (0,+∞) to [0, 1] such
that M(x, y, z, t) + N(x, y, z, t) ≤ 1 for all x, y, z ∈ X and t > 0. The 3-
tuple (X,MM,N , T ) is said to be an intuitionistic fuzzy metric space if X is an
arbitrary (non-empty) set, T is a continuous t–representable and MM,N is a
mapping X3 × (0,+∞) → L∗ (an intuitionistic fuzzy set, see Definition 1.18)
satisfying the following conditions:

For every x, y, z ∈ X and t, s > 0:
(a) MM,N (x, y, z, t) >L∗ 0L∗ ;
(b) MM,N (x, y, z, t) = 1L∗ if and only if x = y = z;
(c) MM,N (x, y, z, t) = MM,N (p{x, y, z}, t) (symmetry), where p is a per-

mutation function;
(d) MM,N (x, y, z, t+ s) ≥L∗ T (MM,N (x, y, a, t),MM,N (a, z, z, s));
(e) MM,N (x, y, z, ·) : (0,∞) −→ L∗ is continuous.

In this case MM,N is called an intuitionistic M-fuzzy metric, where

MM,N (x, y, z, t) = (M(x, y, z, t), N(x, y, z, t)).
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Example 1.23. Let (X,D) be a D-metric space. Denote T (a, b) = (a1b1,
min(a2 + b2, 1)) for all a = (a1, a2) and b = (b1, b2) ∈ L∗ and let M and N be
M-fuzzy sets on X3 × (0,∞) defined as follows:

MM,N (x, y, z, t) = (M(x, y, z, t), N(x, y, z, t))

= (
htn

htn +mD(x, y, z)
,

mD(x, y, z)
htn +mD(x, y, z)

),

for all t, h,m, n ∈ R+. Then (X,MM,N , T ) is an intuitionisticM-fuzzy metric
space.

Definition 1.24. A sequence {xn} is Cauchy in an intuitionistic M-fuzzy
metric space (X,MM,N , T ) if for each 0 < ε < 1 and t > 0, there exists n0 ∈ N
such that

MM,N (xn, xn, xm, t) >L∗ (Ns(ε), ε),

and for each n,m ≥ n0, where Ns is the standard negator. The sequence
{xn} is said to be convergent to x ∈ X in the intuitionistic M-fuzzy metric

space (X,MM,N , T ) and denoted by xn
MM,N−→ x ifMM,N (xn, xn, x, t) −→ 1L∗

whenever n −→ ∞ for every t > 0. An intuitionistic M-fuzzy metric space is
said to be complete if and only if every Cauchy sequence is convergent.

Lemma 1.25. Let MM,N be an intuitionistic M-fuzzy metric. Then, for any
t > 0, MM,N (x, y, z, t) is nondecreasing with respect to t, in (L∗,≤L∗), for all
x, y, z in X.

Proof. The proof is same as M-fuzzy metric spaces (see Lemma 1.12). �

Definition 1.26. Let (X,MM,N , T ) be an intuitionisticM-fuzzy metric space.
For t > 0, define the open ball BMM,N

(x, r, t) with center x ∈ X and radius
0 < r < 1, as

BMM,N
(x, r, t) = {y ∈ X :MM,N (x, y, y, t) >L∗ (Ns(r), r)}.

A subset A ⊆ X is called open if for each x ∈ A, there exist t > 0 and
0 < r < 1 such that BMM,N

(x, r, t) ⊆ A. Let τMM,N
denote the family of

all open subset of X. τMM,N
is called the topology induced by intuitionistic

M-fuzzy metric.

Definition 1.27. Let (X,MM,N , T ) be an intuitionisticM-fuzzy metric space.
A subset A of X is said to be IF-bounded if there exist t > 0 and 0 < r < 1
such that MM,N (x, y, y, t) >L∗ (Ns(r), r) for each x, y ∈ A.

Definition 1.28. Let (X,MM,N , T ) be an intuitioisticM-fuzzy metric space.
M is said to be continuous on X3×]0,∞[ if

lim
n→∞

MM,N (xn, yn, zn, tn) =MM,N (x, y, z, t),
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whenever a sequence {(xn, yn, zn, tn)} in X3×]0,∞[ converges to a point (x, y,
z, t) ∈ X3×]0,∞[ i.e.,

lim
n
MM,N (xn, x, z, t) = lim

n
MM,N (x, yn, z, t) = lim

n
MM,N (x, y, zn, t) = 1L∗

and
lim
n
MM,N (x, y, z, tn) =MM,N (x, y, z, t).

Lemma 1.29. Let (X,MM,N , T ) be an intuitioistic M-fuzzy metric space.
Then M is continuous function on X3×]0,∞[.

Proof. The proof is same as M-fuzzy metric spaces (see Lemma 1.14). �

Lemma 1.30. Let (X,MM,N , T ) be an intuitioistic M-fuzzy metric space.
Define Eλ,M : X3 −→ R+ ∪ {0} by

Eλ,M(x, y, z) = inf{t > 0 :MM,N (x, y, z, t) >L∗ (Ns(λ), λ)

for each 0 < λ < 1 and x, y, z ∈ X. Then we have

(i) for any 0 < µ < 1 there exists 0 < λ < 1 such that

Eµ,M(x1, x1, xn) ≤ Eλ,M(x1, x1, x2) + Eλ,M(x2, x2, x3) + · · ·
+ Eλ,M(xn−1, xn−1, xn)

for any x1, ..., xn ∈ X;
(ii) the sequence {xn} is convergent in the intuitioistic M-fuzzy metric

(X,MM,N , T ) if and only if Eλ,M(xn, xn, x)
MM,N−→ 0. Also the se-

quence {xn} is Cauchy if and only if it is Cauchy with Eλ,M.

Proof. The proof is same as fuzzy metric spaces (see Lemma 1.15) �

Lemma 1.31. Let (X,MM,N , T ) be an intuitioistic M-fuzzy metric space. If

MM,N (xn, xn, xn+1, t) ≥L∗ MM,N (x0, x0, x1, k
nt)

for some k > 1 and n ∈ N, then {xn} is a Cauchy sequence.

Proof. For every λ ∈ (0, 1) and xn ∈ X, we have

Eλ,M(xn, xn, xn+1) = inf{t > 0 : MM,N (xn, xn, xn+1, t) >L∗ (Ns(λ), λ)}
≤ inf{t > 0 : MM,N (x0, x0, x1, k

nt) >L∗ (Ns(λ), λ)}

= inf{ t
kn

: MM,N (x0, x0, x1, t) >L∗ (Ns(λ), λ)}

=
1
kn

inf{t > 0 : MM,N (x0, x0, x1, t) >L∗ (Ns(λ), λ)}

=
1
kn
Eλ,M(x0, x0, x1).
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From Lemma 1.30, for every µ ∈ (0, 1) there exists λ ∈ (0, 1) such that

Eµ,M(xn, xn, xm)
≤ Eλ,M(xn, xn, xn+1) + Eλ,M(xn+1, xn+1, xn+2) + · · ·

+Eλ,M(xm−1, xm−1, xm)

≤ 1
kn
Eλ,M(x0, x0, x1) +

1
kn+1

Eλ,M(x0, x0, x1) + · · ·

+
1

km−1
Eλ,M(x0, x0, x1)

= Eλ,M(x0, x0, x1)
m−1∑
j=n

1
kj

−→ 0.

Hence sequence {xn} is Cauchy in an intuitimistic M-fuzzy metric space. �

2. The main results

Theorem 2.1. Let (X,MM,N , T ) be a complete intuitionisticM-fuzzy metric
space with T (t, t) = t for all t ∈ L∗. Let S, T : X → X be mappings satisfying
the following condition: there exists a constant k ∈ (0, 1) such that

MM,N (Sx, Ty, Tz, kt) ≥L∗ a(t)MM,N (x, Sx, Sx, t)

+ b(t)MM,N (y, Ty, Tz, t) + c(t)MM,N (x, Ty, Tz, αt)

+ h(t)MM,N (y, Sx, Sx, (2− α)t)

+ p(t)MM,N (x, y, z, t)

for every x, y, z ∈ X and for all α ∈ (0, 2), where
a, b, c, h, p : [0,∞) −→ [0, 1] are five functions such that

a(t) + b(t) + c(t) + h(t) + p(t) = 1 for every t ∈ [0,∞).

Then S and T have a unique common fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point and there exists x1, x2 ∈ X such that
x1 = Sx0 and x2 = Tx1. Inductively, construct sequence {xn} in X such that
x2n+1 = Sx2n and x2n+2 = Tx2n+1, for n = 0, 1, 2, · · · . We show that the
sequence {xn} is Cauchy. Let

dm(t) =MM,N (xm, xm+1, xm+1, t), t > 0.



FIXED POINT THEOREM IN L∗M-FUZZY METRIC SPACES FOR TWO MAPS 209

Then, we prove {dm(t)} is increasing w.r.t m. For, m = 2n+ 1, we have

d2n+1(kt) =MM,N (x2n+1, x2n+2, x2n+2, kt)

=MM,N (Sx2n, Tx2n+1, Tx2n+1, kt)

≥L∗ a(t)MM,N (x2n, Sx2n, Sx2n, t)

+ b(t)MM,N (x2n+1, Tx2n+1, Tx2n+1, t)

+ c(t)MM,N (x2n, Tx2n+1, Tx2n+1, αt)

+ h(t)MM,N (x2n+1, Sx2n, Sx2n, (2− α)t)

+ p(t)MM,N (x2n, x2n+1, x2n+1, t)

= a(t)MM,N (x2n, x2n+1, x2n+1, t)

+ b(t)MM,N (x2n+1, x2n+2, x2n+2, t)

+ c(t)MM,N (x2n, x2n+2, x2n+2, αt)

+ h(t)MM,N (x2n+1, x2n+1, x2n+1, (2− α)t)

+ p(t)MM,N (x2n, x2n+1, x2n+1, t).

Hence,

d2n+1(kt) ≥L∗ a(t)d2n(t) + b(t)d2n+1(t) + c(t)T (d2n(t), d2n+1(qt))

+ h(t) + p(t)d2n(t).
(2.1)

The last equality is true, because if set α = 1 + q, for q ∈ (k, 1), then

MM,N (x2n, x2n+2, x2n+2, (1 + q)t)
= MM,N (x2n, x2n, x2n+2, (1 + q)t)
≥L∗ T (MM,N (x2n, x2n, x2n+1, t),MM,N (x2n+1, x2n+2, x2n+2, qt))
= T (d2n(t), d2n+1(qt)).

We claim that for every n ∈ N, d2n+1(t) ≥L∗ d2n(t). If d2n+1(t) <L∗ d2n(t)
then, since for some n ∈ N, T (d2n+1(qt), d2n(t)) >L∗ T (d2n+1(qt), d2n+1(qt))
= d2n+1(qt) in inequality (2.1), we have

d2n+1(kt) >L∗ a(t)d2n+1(qt) + b(t)d2n+1(qt) + c(t)d2n+1(qt)

+ h(t)d2n+1(qt) + p(t)d2n+1(qt)

= d2n+1(qt).

This is a contradiction. Hence d2n+1(t) ≥L∗ d2n(t) for every n ∈ N and ∀t > 0.
Similarly, we have d2n(t) ≥L∗ d2n−1(t). Thus {dn(t)} is an increasing sequence
in L∗. By inequality (2.1), we have

d2n+1(kt) ≥L∗ a(t)d2n(qt) + b(t)d2n(qt) + c(t)T (d2n(qt), d2n(qt))

+ h(t)d2n(qt) + p(t)d2n(qt)

= d2n(qt).
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Now, if m = 2n, then by hypothesis, we have

d2n(kt) =MM,N (x2n, x2n+1, x2n+1, kt)

=MM,N (Sx2n−1, Tx2n, Tx2n, kt)

≥L∗ a(t)MM,N (x2n−1, Sx2n−1, Sx2n−1, t)

+ b(t)MM,N (x2n, Tx2n, Tx2n, t)

+ c(t)MM,N (x2n−1, Tx2n, Tx2n, αt)

+ h(t)MM,N (x2n, Sx2n−1, Sx2n−1, (2− α)t)

+ p(t)MM,N (x2n−1, x2n, x2n, t)

= a(t)MM,N (x2n−1, x2n, x2n, t)

+ b(t)MM,N (x2n, x2n+1, x2n+1, t)

+ c(t)MM,N (x2n−1, x2n+1, x2n+1, αt)

+ h(t)MM,N (x2n, x2n, x2n, (2− α)t)

+ p(t)MM,N (x2n−1, x2n, x2n, t).

Hence

d2n(kt) ≥L∗ a(t)d2n−1(t) + b(t)d2n(t) + c(t)T (d2n−1(t), d2n(qt))

+ h(t) + p(t)d2n−1(t).
(2.2)

The last equality is true, because if set α = 1 + q, for q ∈ (k, 1), then

MM,N (x2n−1, x2n+1, x2n+1, (1 + q)t)
= MM,N (x2n−1, x2n−1, x2n+1, (1 + q)t)
≥L∗ T (MM,N (x2n−1, x2n−1, x2n, t),MM,N (x2n, x2n+1, x2n+1, qt))
= T (d2n−1(t), d2n(qt)).

We claim that for every n ∈ N, d2n(t) ≥L∗ d2n−1(t). If d2n(t) <L∗ d2n−1(t),
then since T (d2n(qt), d2n−1(t)) ≥L∗ T (d2n(qt), d2n(qt)) = d2n(qt) in inequality
(2.2), we have

d2n(kt) >L∗ a(t)d2n(qt) + b(t)d2n(qt) + c(t)d2n(qt) + h(t)d2n(qt)

+ p(t)d2n(qt)

= d2n(qt).

This is a contradiction. Hence d2n(t) ≥L∗ d2n−1(t) for every n ∈ N and ∀t >
0. Similarly, we have d2n−1(t) ≥L∗ d2n−2(t). Thus {dn(t)} is an increasing
sequence in L∗. By inequality (2.2), we have

d2n(kt) ≥L∗ a(t)d2n−1(qt) + b(t)d2n−1(qt) + c(t)T (d2n−1(qt), d2n−1(qt))

+ h(t)d2n−1(qt) + p(t)d2n−1(qt)

= d2n−1(qt).
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Hence we have d2n(kt) ≥L∗ d2n−1(qt). Thus dn(kt) ≥L∗ dn−1(qt), for every
n ∈ N. That is,

MM,N (xn, xn+1, xn+1, t) ≥L∗ MM,N (xn−1, xn, xn,
q

k
t)

≥L∗ · · ·

≥L∗ MM,N (x0, x1, x1, (
q

k
)nt).

Hence by Lemma 1.31 {xn} is a Cauchy sequence in X, and so {xn} converges
to x in X. That is, limn→∞ xn = x, hence

lim
n→∞

x2n+1 = lim
n→∞

Sx2n = lim
n→∞

Tx2n+1

= lim
n→∞

x2n+2 = x.

We prove that Sx = x.
For if α = 1, setting x = x and y = z = x2n+1 in inequality (2.1), we obtain

MM,N (Sx, Tx2n+1, Tx2n+1, kt)
≥L∗ a(t)MM,N (x, Sx, Sx, t) + b(t)MM,N (x2n+1, Tx2n+1, Tx2n+1, t)

+c(t)MM,N (x, Tx2n+1, Tx2n+1, t) + h(t)MM,N (x2n+1, Sx, Sx, t)
+p(t)MM,N (x, x2n+1, x2n+1, t).

If Sx 6= x, then by taking n −→∞, we have

MM,N (Sx, x, x, kt)
≥L∗ a(t)MM,N (x, Sx, Sx, t) + b(t)MM,N (x, x, x, t)

+c(t)MM,N (x, x, x, t) + h(t)MM,N (x, Sx, Sx, t)
+p(t)MM,N (x, x, x, t)

>L∗ MM,N (x, x, Sx, t),

which is a contradiction. It follows that Sx = x.
Similarly we prove that Tx = x. Again, replacing x by x2n and y, z by x in

(2.1), for α = 1, we have

MM,N (Sx2n, Tx, Tx, kt)
≥L∗ a(t)MM,N (x2n, Sx2n, Sx2n, t) + b(t)MM,N (x, Tx, Tx, t)

+c(t)MM,N (x2n, Tx, Tx, t) + h(t)MM,N (x, Sx2n, Sx2n, t)
+p(t)MM,N (x2n, x, x, t)

and so if Tx 6= x, taking n −→∞, we have

MM,N (x, Tx, Tx, kt)
≥L∗ a(t)MM,N (x, x, x, t) + b(t)MM,N (x, Tx, Tx, t)

+c(t)MM,N (x, Tx, Tx, t) + h(t)MM,N (x, x, x, t)
+p(t)MM,N (x, x, x, t)

>L∗ MM,N (x, Tx, Tx, t),
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which implies that, Tx = x. Therefore, Sx = Tx = x, this is, x is a common
fixed point of self-maps S and T . Now, we have to prove the uniqueness of the
common fixed point of S and T . If x′ is another fixed point of S and T , then
for α = 1 we have

MM,N (x, x′, x′, kt)
= MM,N (Sx, Tx′, Tx′, kt)
≥L∗ a(t)MM,N (x, Sx, Sx, t) + b(t)MM,N (x′, Tx′, Tx′, t)

+c(t)MM,N (x, Tx′, Tx′, t) + h(t)MM,N (x′, Sx, Sx, t)
+p(t)MM,N (x, x′, x′, t)

>L∗ MM,N (x, x′, x′, t)

and so, x = x′. �
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