DOI QR코드

DOI QR Code

BIPARTITE STEINHAUS GRAPHS WITH CONNECTIVITY TWO

  • 투고 : 2009.01.05
  • 심사 : 2009.04.28
  • 발행 : 2009.06.30

초록

In this paper, we investigate the generating strings and the number of 2-(edge)connected bipartite Steinhaus graphs.

키워드

참고문헌

  1. B. Bollobas, Graph Theory, Springer-Verlag, New York, 1979.
  2. W. M. Dymacek, Bipartite Steinhaus graphs, Discrete Mathematics, 59(1986), 9-22. https://doi.org/10.1016/0012-365X(86)90064-6
  3. W. M. Dymacek, Connectivity in Steinhaus graphs, in preperation.
  4. W. M. Dymacek and T. Whaley, Generating strings for bipartite Steinhaus graphs, Discrete Mathematics, 141(1995), no.1-3, 95-107. https://doi.org/10.1016/0012-365X(93)E0211-L
  5. W. M. Dymacek, M. Koerlin and T. Whaley, A survey of Steinhaus graphs, Proceedings of the Eighth Quadrennial Intrrnational Conference on Graph Theory, Combinatorics, Algorithm and Applications, 313-323, 1(1998).
  6. G. J. Chang, B. DasGupta, W. M. Dymacek, M. Furer, M. Koerlin, Y. Lee and T. Whaley, Characterizations of bipartite Steinhaus graphs, Discrete Mathematics, 199(1999), 11-25. https://doi.org/10.1016/S0012-365X(98)00282-9
  7. H. Harborth, Solution of Steinhaus's problem with plus and minus signs, J. Combinatorial Theory Ser. A, 12(1972), 253-259. https://doi.org/10.1016/0097-3165(72)90039-8
  8. D. J. Kim and D. K. Lim, 2-connected and 2-edge-connected Steinhaus graphs, Discrete Math., 256(2002), no.1-2, 257-265. https://doi.org/10.1016/S0012-365X(01)00468-X
  9. D. J. Kim and D. K. Lim, Steinhaus Graphs with Minimum Degree Two, Kyungpook Mathematical Journal, 43(2003), no.4, 567-577.
  10. H. Steinhaus, One Hundred Problems in Elementary Mathematics, Dover, New York, 1979.