• Title/Summary/Keyword: arbuscular mycorrhiza

Search Result 20, Processing Time 0.022 seconds

Effects of Inoculation of Rhizobium and Arbuscular Mycorrhiza, Poultry litter, Nitrogen, and Phosphorus on Growth and Yield in Chickpea

  • Solaiman A. R. M.;Rabbani M. G.;Molla M. N.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.256-261
    • /
    • 2005
  • The experiment was conducted at the Ban­gabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur to study the response of chickpea (Cicer arietinum L) to dual inoculation of Rhizobium and arbuscular mycorrhiza, poultry litter, nitrogen, and phosphorus on spore population and colonization, nodulation, growth, yield attributes, and yield. The performance of Rhizobium inoculant alone was superior to control in all the parameters of the crop studied. Among the treatments dual inoculation of Rhizobium and arbuscular mycorrhiza in presence of poultry litter performed best in recording number and dry weight of nodules, dry weight of shoots and roots, number of pods/plant, number of seeds/pod, and seed yields of chickpea. The highest seed yield of 3.96g/plant was obtained by inoculating chickpea plants with dual inoculation of Rhizobium and arbuscular mycorrhiza in association with poultry litter. Treatments receiving dual inoculation of Rhizobium and arbuscular mycorrhiza in presence of nitrogen and phosphorus, Rhizobium inoculant in presence of nitrogen and phosphorus, and that of arbuscular mycorrhiza in presence of nitrogen and phosphorus were similar as that of treatment receiving dual inoculation of Rhizobium and arbuscular mycorrhiza in presence of poultry litter. From the view point of nodulation, growth, yield attributes, and yields of chickpea, dual inoculation of Rhizobium inoculant and arbuscular mycorrhiza along with poultry litter was considered to be the balanced combination of nutrients for achieving the maximum output from cultivation of chickpea in Shallow Red Brown Terrace Soil of Bangladesh.

Effect of Mycorrhiza on Plant Growth and Drought Resistance in Ardisia pusilla (Mycorrhiza 처리가 Ardisia pusilla의 생육 및 내건성에 미치는 영향)

  • Baek, Yi-Hwa;Baikt, Jung-Ae;Lee, Yun-Jeong;Nam, Yu-Kyeong;Sohn, Bo-Kyoon;Lee, Jae-Sun;Chiang, Mae-Hee
    • Journal of Bio-Environment Control
    • /
    • v.18 no.2
    • /
    • pp.132-136
    • /
    • 2009
  • To investigate the effect of mycorrhiza on drought resistance and plant growth, Ardisia pusilla were colonized with arbuscular mycorrhiza (AM), Glomus spp. Host plants were cultured in a growth chamber for 30 days after colonization with AM. Water stress treatment was carried out by repeating five days off-watering and re-watering for 60 days. The growth of A. pusilla was enhanced by AM colonization compared to that of control, while the proline contents was significantly reduced in AM colonized plants compared to that of non-mycorrhizal plants. The inorganic nutrient contents i.e. Fe, Mn, Zn, and Cu in arbuscular mycorrhizal plants were higher than those of control.

Response of Chickpea to Dual Inoculation with Rhizobium and Arbuscular Mycorrhiza, Nitrogen and Phosphorus

  • Solaiman, A.R.M.;Molla, M.N.;Hossain, M.D.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.527-533
    • /
    • 2006
  • The response of chickpea (Cicer arietinum L.) to dual inoculation with Rhizobium (R) and arbuscular mycorrhiza (AM), nitrogen (N) and phosphorus (P) was studied on spore abundance and colonization of AM, nodulation, growth, yield attributes and yield. In all the parameters of the crop the performance of Rhizobium inoculant alone was superior to control. Dual inoculation with Rhizobium and AM in presence of P performed the best in recording number of spore $100g^{-1}$ rhizosphere soil and root colonization, number and dry weight of nodule, dry weights of shoot and root, number of pod $plant^{-1}$, number of seed $pod^{-1}$, seed and stover yields of chickpea. The maximum seed yield of 3.33 g $plant^{-1}$ was obtained by inoculating chickpea plants with Rhizobium and AM in association with P. From the view point of nodulation, growth, yield attributes and yield of chickpea, dual inoculation with Rhizobium and AM along with P was considered to be the balanced combination of nutrients for achieving the highest output from cultivation of chickpea in Shallow Red Brown Terrace Soil of Bangladesh.

Observations of Infection Structures on the Leaves of Cucumber Plants Pre-treated with Arbuscular Mycorrhiza Glomus intraradices after Challenge Inoculation with Colletotrichum orbiculare

  • Lee, Chung-Sun;Lee, Yun-Jeong;Jeun, Yong-Chull
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.237-243
    • /
    • 2005
  • Resistance inductions on the leaves of cucumber plant by an arbuscular mycorrhiza Glomus intraradices were investigated. In addition, the infection structures were observed at the penetration sites on the leaves of plant inoculated with Colletotrichum orbiculare using a fluorescence microscope. The severity of anthracnose disease caused by Colletotrichum orbiculare was significantly decreased on the leaves of cucumber plant colonized with G intraradices compared with those of non-treated control plants. As a positive control, pre-treatment with DL-3-aminobutyric acid (BABA) caused a remarkable reduction of the disease severity on the pathogen-inoculated leaves. There were no significant differences in the frequency of either germination or appressorium formation of the plant pathogen between mycorrhiza colonized and non-treated plants. It was also the same on the BABA pre-treated plants. However, the frequency of callose formation was significantly high on the leaves of G intraradices colonized plants compared to those of non-treated control plants at 5 days after challenge inoculation. On the leaves of BABA treated plants callose formation was not significantly high than those of non-treated, although the disease severity was more strongly suppressed. It was suggested that the resistance induced by colonization with G. intraradices might be related to the enhancement of callose formation at the penetrate sites on the leaves invaded by the pathogen, whereas resistance by BABA did not.

Multiple Symbiotic Associations Found in the Roots of Botrychium ternatum

  • Lee, Jun-Ki;Eom, Ahn-Heum;Lee, Sang-Sun
    • Mycobiology
    • /
    • v.30 no.3
    • /
    • pp.146-153
    • /
    • 2002
  • Two types of mycorrhizae, orchid(OM) and arbuscular mycorrhizae(AM), were observed in the cortical cells of Botrychium ternatum roots. The vesicles or arbuscules of AM fungi were examined and the fresh or digestive pelotons by other species of basidiomycetes were also observed in the roots under light microscope. These symbioses were, as the genomic DNAs extracted from roots of B. ternatum reacted with the specific primers, confirmed with PCR technique, being added to more strong evidences. These discoveries were rarely happened in the roots, especially a fern in nature. OM was observed in the roots of B. ternatum collected from the nationwide areas, whereas AM was only in the roots of B. ternatum collected from Chung-Buk areas. It is speculated that OM are associated with the nitrogen cycle in Islands and the growth of B. ternatum in the inland of Central Korea is related to both the phosphate and nitrogen cycle in the nature. The results suggest that B. ternatum is a typical species with two types of mycorrhizae under various growing conditions.

The Effects of Glomus etunicatum Innoculation of Robinia pseudoacacia Seedlings on Soil Aggregate Formation in Coal Mine Tailings

  • Hong, Seung-Jin;Park, Yong-Woo;Lim, Kyung-Min;Kim, Se-Kyung;Koo, Chang-Duck
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.1
    • /
    • pp.88-94
    • /
    • 2015
  • An investigation was conducted on the effects of arbuscular mycorrhizal fungus, Glomus etunicatum on the formation of soil aggregate and mycorhizal development in the roots of Robinia pseudoacacia seedlings in coal mine tailings and forest soil. G. etunicatum formed mycorrhizas by 35.1 % in coal mine tailings and by 48.9 % in forest soil. Its infection was the typical Arum-type forming inter-cellular hyphae and intra-cellular arbuscules. Ergosterol contents were 3.20 ppm in forest soil and 1.92 ppm in coal mine tailings. The formation of soil aggregate per 50 g pot soil was 19.6 g and 9.5 g in inoculated and noninoculated forest soil and 16.5 g and 11.0 g in inoculated and non-inoculated coal min tailings, respectively. In conclusion, G. etunicatum inoculation increased the formation of soil aggregate both in forest soil and coal mine tailings, but was less effective in the latter.

Effects of Interspecific Interactions of Arbuscular Mycorrhizal Fungi on Growth of Soybean and Corn

  • Jeong, Hyeon-Suk;Lee, Jai-Koo;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.34 no.1
    • /
    • pp.34-37
    • /
    • 2006
  • Growth responses of Zea mays and Glycine max to colonization by mixture of combination of three species of arbuscular mycorrhizal (AM) fungi, two species of Glomus and a species of Scutellospora were compared. In Zea mays, plants inoculated with single species of AM fungi showed significantly higher in dry weight than non-mycorrhizal plant for all three AM fungal species. Also, growth of plants inoculated with spores of two species of AM fungi was significantly higher than nonmycorrhizal control except for plants inoculated with two Glomus species. When three species of AM fungi were inoculated, the plants showed the highest growth. In Glycine max, plants with single AM fungal species inoculation were not significantly different in plant growth from nonmycorrhizal plants. When the plants were inoculated with combination of two or more AM fungal species, their growth significantly increased compared to nonmycorrhizal plants. In both plant species, mycorrhizal root colonization by Scutellospora species was significantly lower than by Glomus species.

The Observation of Arbuscular Mycorrhizal Roots in Horticultural Plants

  • Kim, Yee;Eom, Ahn-Heum;Tae, Moon-Sung;Lee, Sang-Sun
    • Mycobiology
    • /
    • v.28 no.3
    • /
    • pp.115-118
    • /
    • 2000
  • To determine the degree of variability among the host plant species in their abilities to become colonized by arbuscular mycorrhizal fungi (AMF), the inoculum for AMF was collected from the various sites in Korea and was inoculated to the three horticultural plants; Tagetes patula, Torenia fournieri, and Salvia splendens. After 4-month growth under greenhouse, mycorrhizal root colonization rates and spore density were measured. The roots of T. patula showed higher colonization rate than both plants of T. fournieri and Salvia splendens. The mycorrhizal root colonization was influenced by both of the AM fungal inoculum and the host species or their interactions. The combination of the host and fungal species was suggested to be important for the application of AMF to horticultural crops.

  • PDF

Effects of Soils Containing Arbuscular Mycorrhizas on Plant Growth and Their Colonization

  • Eom, Ahn-Heum;Kim, Yee;Lee, Sang-Sun
    • Mycobiology
    • /
    • v.30 no.1
    • /
    • pp.18-21
    • /
    • 2002
  • Four arbuscular mycorrhizal fungal(AMF) inocula collected from three arable sites in Korea were used to determine plant growth, mycorrhizal root colonization rate and spore production in three different host plant species; Sorghum bicolor, Allium fistulosum, Tagetes patula. Growth of plant treated with AMF differed from those without AMF. Different AMF inocula showed significantly different root colonization rates and spore production of AMF on the wild plants, A. fistulosum and T. patula, but did not on the cultivated plant, S. bicolor. Results suggested that indigenous mycorrhizal fungal community would be important factors in mycorrhizal symbiosis, and play important roles in the plant succession.

Biodiversity and Distribution of Arbuscular Mycorrhizal Fungi in Korea

  • Eo, Ju-Kyeong;Park, Sang-Hee;Lee, Eun-Hwa;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.42 no.4
    • /
    • pp.255-261
    • /
    • 2014
  • In this study, we summarized previous studies on diversity and distribution of arbuscular mycorrhizal fungi (AMF) for last 30 years in Korea. According to a review of the literature concerning AMF in Korea, 14 genera and 89 species have been recorded. Host plants for AMF are very diverse and include crop species and woody plants in natural forests. Based on the achievements of the last 30 years of study on AMF, we anticipate that relatively more intensive studies of the functional and genetic diversity of AMF will be conducted.