DOI QR코드

DOI QR Code

Long Period Structures and Stacking Faults in Rapidly Solidified Powder Metallurgy (RS P/M) Mg97Zn1Y2 Alloy

급속응고 분말법으로 제조된 Mg97Zn1Y2 합금의 장주기 구조와 적층결함

  • Park, Eun-Kee (Division of Nano Technology, Chungnam National University) ;
  • Kim, Woo-Jung (Division of Nano Technology, Chungnam National University) ;
  • Kim, Taek-Soo (Korea Institute of Industrial Technology) ;
  • Lee, Kap-Ho (Division of Nano Technology, Chungnam National University)
  • 박은기 (충남대학교 공과대학 나노공학부) ;
  • 김우정 (충남대학교 공과대학 나노공학부) ;
  • 김택수 (한국생산기술원 신소재본부) ;
  • 이갑호 (충남대학교 공과대학 나노공학부)
  • Published : 2009.08.27

Abstract

The long-period stacking order (LPSO) structures and stacking faults (SFs) in rapidly solidified powder metallurgy (RS P/M) $Mg_{97}Zn_1Y_2$ alloy were investigated by high resolution transmission electron microscopy (HRTEM) observations. The 18R-type LPSO structure with a stacking sequence of ACBCBCBACACACBABAB and a period of 4.86 nm was observed in the as-extruded RS P/M $Mg_{97}Zn_1Y_2$ alloy. After annealing at 773 K for 5 hr, the 18R-type LPSO structure was transformed to the 14H-type LPSO structure with a stacking sequence of ABABABACBCBCBC and a period of 3.64 nm. The 24R-type LPSO structure containing 24 atomic layers of ABABABABCACACACABCBCBCBC with period of 6.18 nm coexists with the 14H-type LPSO structure in the same grains. The LPSO structures contain intrinsic Type II SFs such as BCB/CABA and ABA/CBCB stacking sequences of a closely packed plane.

Keywords

References

  1. I. J. Polmear, Mater. Sci. Tech., 10, 1 (1994) https://doi.org/10.1179/mst.1994.10.1.1
  2. K. U. Kainer, Magnesium Alloys and their Applications, p. 3-8, John Wiley & Sons, New York (2000)
  3. Y. Kawamura, K. Hayashi, A. Inoue and T. Masumoto, Mater. Trans., 42, 1172 (2001) https://doi.org/10.2320/matertrans.42.1172
  4. A. Inoue, Y. Kawamura, M. Matsushita, K. Hayashi and J. Koike, J. Mater. Res., 16, 1894 (2001) https://doi.org/10.1557/JMR.2001.0260
  5. A. Inoue, M. Matsushita, Y. Kawamura, K. Amiya, K. Hayashi and J. Koike, Mater. Trans., 43, 580 (2002) https://doi.org/10.2320/matertrans.43.580
  6. A. Inoue, M. Matsushita, Y. Kawamura, K. Amiya, K. Hayashi and J. Koike, Mater. Trans., 43, 580 (2002) https://doi.org/10.2320/matertrans.43.580
  7. E. Abe, Y. Kawamura, K. Hayashi and A. Inoue, Acta Mater., 50, 3845 (2002) https://doi.org/10.1016/S1359-6454(02)00191-X
  8. K. Amiya, T. Ohsuna and A. Inoue, Mater. Trans., 44, 2151 (2003) https://doi.org/10.2320/matertrans.44.2151
  9. T. Itoi, T. Seimiya, Y. Kawamura and M. Hiroshi, Scripta Mater., 51, 107 (2004) https://doi.org/10.1016/j.scriptamat.2004.04.003
  10. M. Yamasaki, T. Anan, S. Yoshimoto and Y. Kawamura, Scripta Mater., 53, 799 (2005) https://doi.org/10.1016/j.scriptamat.2005.06.006
  11. S. Yoshimoto, M. Yamasaki and Y. Kawamura, Mater. Trans., 47, 959 (2006) https://doi.org/10.2320/matertrans.47.959
  12. M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga and Y. Kawamura, Acta Mater., 55, 6798 (2007) https://doi.org/10.1016/j.actamat.2007.08.033
  13. M. Matsuda, S. Ii, Y. Kawamura, Y. Ikuhara and M. Nishida, Mater. Sci. Eng., A 393, 269 (2005) https://doi.org/10.1016/j.msea.2004.10.040
  14. D. H. Ping, K. Hono, Y. Kawamura and A. Inoue, Phil. Mag. Lett., 82, 543 (2002) https://doi.org/10.1080/0950083021000018652
  15. J. P. Hirth and J. Lothe, Theory of dislocations, 2nd ed, p. 354, John Wiley&Sons Inc, New York, USA, (1982)
  16. J. F. Nie, K. Ohishi, X. Gao and K. Hono, Acta Mater., 56, 6061 (2008) https://doi.org/10.1016/j.actamat.2008.08.025
  17. M. Nishida, Y. Kawamura and T. Yomamuro, Mater. Sci. Eng., A 375-377, 1217 (2004) https://doi.org/10.1016/j.msea.2003.10.145