DOI QR코드

DOI QR Code

Glycothermal Synthesis and Characterization of 3Y-TZP Nanoparticles

  • Song, Jeong-Hwan (Department of Information & Electronic Materials Engineering, PaiChai University) ;
  • Lee, Ju-Hee (Department of Dental Laboratory Technology, Daejeon Health Sciences College)
  • Published : 2009.08.27

Abstract

In this study, 3 mol% yttria-tetragonal zirconia polycrystal (3Y-TZP) nanoparticles were synthesized by the glycothermal method under various reaction temperatures and times. The co-precipitated precursor of 3Y-TZP was prepared by adding $NH_4OH$ to starting solutions, and then the mixtures were placed in an autoclave reactor. Tetragonal yttria-doped zirconia nanoparticles were afforded through a glycothermal reaction at a temperature as low as $220^{\circ}C$, using co-precipitated gels of $ZrCl_4$ and $YCl_3{\cdot}6H_2O$ as precursors and 1,4-butanediol as the solvent. The synthesized 3Y-TZP particles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Raman spectroscopy. The 3Y-TZP particles have a stable tetragonal phase only at glycothermal temperatures above $200^{\circ}C$. To investigate phase transition, the 3Y-TZP particles were heat treated from 400 to $1400^{\circ}C$ for 2 h. Raman analysis indicated that, after heat treatment, the tetragonal phase of the 3Y-TZP particles remained stable. The results of this study, therefore, suggest that 3Y-TZP powders can be prepared by the glycothermal method.

Keywords

References

  1. E.C. Subbara, Science and Technology of Zirconia, Adv. in Ceramics vol.3, p.1-24, eds., A. H. Heuer, L. W. Hobbs (The American Ceramic Society, Columbus, Ohio, 1981)
  2. R. C. Garvie, R. H. Hannink and R. T. Pascoe, Nature, 258, 703 (1975) https://doi.org/10.1038/258703a0
  3. R. C. Garvie, J. Phys. Chem., 82, 218 (1978) https://doi.org/10.1021/j100491a016
  4. P. Holtappels and C. Bagger, J. Eur. Ceram. Soc., 22(1), 41 (2002) https://doi.org/10.1016/S0955-2219(01)00238-2
  5. I. Zhitomirsky and A. Petric, J. Eur. Ceram. Soc., 20(12), 2055 (2000) https://doi.org/10.1016/S0955-2219(00)00098-4
  6. J. Cai, C. Raptis, Y. S. Raptis and E. Anastassaki, Phys. Rev. B, 51, 201 (1995) https://doi.org/10.1103/PhysRevB.51.201
  7. C. Piconi and G. Maccauro, Biomaterials, 20, 1 (1999) https://doi.org/10.1016/S0142-9612(98)00010-6
  8. D. J. Green, R. H. Hannink and M. V. Swain, Transformation toughening of ceramics. Boca Raton, Fl: CRC (1989)
  9. T. G. Nieh and J. Wadsworth, Acta Mater., 38, 1121 (1990) https://doi.org/10.1016/0956-7151(90)90185-J
  10. J. Livage, F. Beteille, C. Rouse, M. Chatry and P. Davidson, Acta Mater., 46, 743 (1998) https://doi.org/10.1016/S1359-6454(97)00255-3
  11. A. L. Quinelato, E. Longo, L. A. Perazolli and J. A. Varela, J. Eur. Ceram. Soc., 20, 1077 (2000) https://doi.org/10.1016/S0955-2219(99)00269-1
  12. R. E. Juarez, D. G. Lamas, G. E. Lascalea and N. E. Walsoe de Reca, J. Eur. Ceram. Soc., 20, 133 (2000) https://doi.org/10.1016/S0955-2219(99)00146-6
  13. G. Dell'Agli and G. Mascolo, J. Eur. Ceram. Soc., 20, 139 (2000) https://doi.org/10.1016/S0955-2219(99)00151-X
  14. D. Segal, Key Eng. Mater., 153, 241 (1998) https://doi.org/10.4028/www.scientific.net/KEM.153-154.241
  15. M. Inoue, H. Tanino, Y. Kondo and T. Inui, J. Am. Ceram. Soc., 72 (2), 352 (1989) https://doi.org/10.1111/j.1151-2916.1989.tb06134.x
  16. M. Inoue, J. Phys.: Condens. Matter, 16, S1291-S1303 (2004) https://doi.org/10.1088/0953-8984/16/14/042
  17. C. Chang and S. Jon, CIMTEC 2002 Proc., 4, 761 (2002)
  18. Y. J. Jung, D. Y. Lim, J. S. Nho, S. B. Cho, R. E. Riman and B. W. Lee, J. Crystal Growth, 274, 638 (2005) https://doi.org/10.1016/j.jcrysgro.2004.10.023
  19. Y. Gogotsi and V. Domnich, in High-Pressure Surface Science and Engineering (Materials Science and Engineering), (CRC Press, Taylor & Francis, 2003) p. 467-520

Cited by

  1. Effects of Laser Power Level on Microstructural Properties and Phase Composition of Laser-Clad Fluorapatite/Zirconia Composite Coatings on Ti6Al4V Substrates vol.9, pp.5, 2016, https://doi.org/10.3390/ma9050380