DOI QR코드

DOI QR Code

Effect of prosthetic designs and alveolar bone conditions on stress distribution in fixed partial dentures with pier abutments

중간 지대치가 존재하는 고정성 국소의치에서 보철물 설계 및 치조골 상태가 응력분포에 미치는 영향

  • Cho, Wook (Department of Prosthodontics, College of Dentistry, Pusan National University) ;
  • Kim, Chang-Seop (Department of Prosthodontics, College of Dentistry, Pusan National University) ;
  • Jeon, Young-Chan (Department of Prosthodontics, College of Dentistry, Pusan National University) ;
  • Jeong, Chang-Mo (Department of Prosthodontics, College of Dentistry, Pusan National University)
  • 조욱 (부산대학교 치과대학 치과보철학교실) ;
  • 김창섭 (부산대학교 치과대학 치과보철학교실) ;
  • 전영찬 (부산대학교 치과대학 치과보철학교실) ;
  • 정창모 (부산대학교 치과대학 치과보철학교실)
  • Published : 2009.07.31

Abstract

Statement of problem: Pier abutments act as a Class I fulcrum lever system when the teeth are incorporated in a fixed partial denture with rigid connectors. Therefore non-rigid connector incorporated into the fixed partial denture might reduce the stresses created by the leverage. Purpose: The purpose of this study was to evaluate, by means of finite element method, the effects of non-rigid connectors and supporting alveolar bone level on stress distribution for fixed partial dentures with pier abutments. Material and methods: A 2-dimensional finite element model simulating a 5-unit metal ceramic fixed partial denture with a pier abutment with rigid or non-rigid designs, the connector was located at the distal region of the second premolar, was developed. In the model, the lower canine, second premolar, and second molar served as abutments. Four types of alveolar bone condition were employed. One was normal bone condition and others were supporting bone reduced 20% height at one abutment. Two different loading conditions, each 150 N on 1st premolar and 1st molar and 300N on 1st molar, were used. Results: Two types of FPD were displaced apically. The amount of displacement decreased in an almost linear slope away from the loaded point. Non-rigid design tended to cause the higher stresses in supporting bone of premolar and molar abutments and the lower stresses in that of canine than rigid design. Alveolar bone loss increased the stresses in supporting bone of corresponding abutment. Conclusion: Careful evaluation of the retentive capacity of retainers and the periodontal condition of abutments may be required for the prosthetic design of fixed partial denture with a pier abutment.

연구목적: 하악 제 1 소구치 및 제 1 대구치가 결손 되어 중간 지대치를 갖는 5 본 고정성 국소의치에서 비고정형 어태치먼트의 설계 유무 및 지대치의 지지골 상태에 따른 변위 및 응력분포의 차이를2 차원 유한요소분석을 통해 비교하여 보고자 하였다. 연구 재료 및 방법: 5 본 고정성 국소의치는 일체형과 분할형으로 구분하였으며, 분할형에는 제 2 소구치와 제 1 대구치 사이에 비고정형 어태치먼트를 설계하였다. 지지골은 모두 정상인 경우와 세 개 지대치중 한 개의 지대치에서 임상적 치관 대 치근 비율이 6 : 4 정도까지 골 흡수가 일어난 세 가지 경우를 가정하여 총 네 가지의 지지골 상태를 설정하였다. 제 1 소구치와 제 1 대구치 가공치 중앙에 각각 150 N의 수직 분산하중과, 제 1 대구치 가공치 중앙에 300 N의 수직 집중하중을 가하였다. 결과: 일체형과 분할형 고정성 국소의치 모두에서 하중 시 하방 변위를 보였다. 분할형 고정성 국소의치에서 일체형보다 전방 지대치 지지골에서의 응력은 감소하였으나 중간 및 후방 지대치 지지골에서의 응력은 증가하였다. 지대치의 치조골 흡수가 있는 경우 해당 지대치의 지지골에 국소적인 응력 증가가 나타났다. 결론: 중간 지대치를 갖는 고정성 국소의치를 설계할 경우 유지 장치의 유지 능력과 지대치의 지주 상태 그리고 어태치먼트의 사용에 대한 주의 깊은 고찰이 필요하겠다.

Keywords

References

  1. Landry KE, Johnson PF, Parks VJ, Pelleu GB Jr. A photoelastic study to determine the location of the nonrigid connector in a five-unit intermediate abutment prosthesis. J Prosthet Dent 1987;57:454-7 https://doi.org/10.1016/0022-3913(87)90014-X
  2. Standlee JP, Caputo AA. Load transfer by fixed partial dentures with three abutments. Quintessence Int 1988;19:403-10
  3. Savion I, Saucier CL, Rues S, Sadan A, Blatz M. The pier abutment: a review of the literature and a suggested mathematical model. Quintessence Int 2006;37:345-52
  4. Shillingburg HT Jr, Fisher DW. Nonrigid connectors for fixed partial dentures. J Am Dent Assoc 1973;87:1195-9 https://doi.org/10.14219/jada.archive.1973.0552
  5. Shillingburg HT, Hobo S, Whitsett LD, Jacobi R, Brachett SE. Fundamentals of Fixed Rosthodontics. 3rd ed. Chicago: Quintessence Publishing Co, Inc.; 1997;85-118
  6. Guichet NF. Occlusion-a teaching manual. Anaheim: Denar Co.; 1970;26
  7. Markley MR. Broken-stress principle and design in fixed bridge prosthesis. J Prosthet Dent 1951;1:416-23 https://doi.org/10.1016/0022-3913(51)90027-3
  8. Gill JR. Treatment planning for mouth rehabilitation. J Prosthet Dent 1952;2:230-45 https://doi.org/10.1016/0022-3913(52)90050-4
  9. Adams JD. Planning posterior bridges. J Am Dent Assoc 1956;53:647-54 https://doi.org/10.14219/jada.archive.1956.0236
  10. Ferencz JL. The use of non-rigid connectors for long span ceramo-metal fixed partial dentures. N Y J Dent 1978;48:287-91
  11. Botelho MG, Dyson JE. Long-span, fixed-movable, resinbonded fixed partial dentures: a retrospective, preliminary clinical investigation. Int J Prosthodont 2005;18:371-6
  12. Ziada HM, Orr JF, Benington IC. Photoelastic stress analysis in a pier retainer of an anterior resin-bonded fixed partial denture. J Prosthet Dent 1998;80:661-5 https://doi.org/10.1016/S0022-3913(98)70052-6
  13. Oruc S, Eraslan O, Tukay HA, Atay A. Stress analysis of effects of nonrigid connectors on fixed partial dentures with pier abutments. J Prosthet Dent 2008;99:185-92 https://doi.org/10.1016/S0022-3913(08)60042-6
  14. Son Ho, Kim YS, Kim EN, Kim JD, Kim CY, Na JS, et al. Dental anatomy. 5th ed. Jeesung Publishing Inc.; 2001;85-196
  15. Wheeler RC. Dental Anatomy, Physiology and Occlusion. 5th ed. WB Saunders Co.; 1974;184-287
  16. Carranza FA, Newman MG, Takei H, Klokkevold PR. Carranza’s clinical periodontology. 10th ed. St Louis:Saunders; 2006;68
  17. Eraslan O, Sevimay M, Usumez A, Eskitascioglu G. Effects of cantilever design and material on stress distribution in fixed partial dentures--a finite element analysis. J Oral Rehabil 2005;32:273-8 https://doi.org/10.1111/j.1365-2842.2004.01429.x
  18. Goel VK, Khera SC, Gurusami S, Chen RC. Effect of cavity depth on stresses in a restored tooth. J Prosthet Dent 1992;67:174-83 https://doi.org/10.1016/0022-3913(92)90449-K
  19. Farah JW, Craig RG, Meroueh KA. Finite element analysis of three- and four-unit bridges. J Oral Rehabil 1989;16:603-11 https://doi.org/10.1111/j.1365-2842.1989.tb01384.x
  20. Morris HF. Veterans Administration Cooperative Studies Project No. 147/242. Part VII: The mechanical properties of metal ceramic alloys as cast and after simulated porcelain firing. J Prosthet Dent 1989;61:160-9 https://doi.org/10.1016/0022-3913(89)90366-1
  21. Lee JH, Kim JS. Oral Physiology. 4th ed. Koonja Publishing Co.; 1994,121
  22. Boucher CO, Zarb GA, Carlsson GE, Bolender CL. Boucher’s Prosthodontic Treatment for Edentulous Patients. 11th ed. St. Louis: Elsevier; 1997;358-89
  23. Farah JW, Craig RG. Reflection photoelastic stress analysis of a dental bridge. J Dent Res 1971;50:1253-9 https://doi.org/10.1177/00220345710500052701
  24. el-Ebrashi MK, Craig RG, Peyton FA. Experimental stress analysis of dental restorations. VII. Structural design and stress analysis of fixed partial dentures. J Prosthet Dent 1970;23:177-86 https://doi.org/10.1016/0022-3913(70)90295-7
  25. Sutherland JK, Holland GA, Sluder TB, White JT. A photoelastic analysis of the stress distribution in bone supporting fixed partial dentures of rigid and nonrigid design. J Prosthet Dent 1980;44:616-23 https://doi.org/10.1016/0022-3913(80)90457-6
  26. Moulding MB, Holland GA, Sulik WD. Photoelastic stress analysis of supporting alveolar bone as modified by nonrigid connectors. J Prosthet Dent 1988;59:263-74 https://doi.org/10.1016/0022-3913(88)90170-9