DOI QR코드

DOI QR Code

A study on the shear bond strengths of veneering ceramics to the colored zirconia core

착색지르코니아 코어와 전장 도재 사이의 전단결합강도에 관한 연구

  • Kang, Sun-Nyo (Department of Dentistry, Graduate School, Pusan National University) ;
  • Cho, Wook (Department of Dentistry, Graduate School, Pusan National University) ;
  • Jeon, Young-Chan (Department of Dentistry, Graduate School, Pusan National University) ;
  • Jeong, Chang-Mo (Department of Dentistry, Graduate School, Pusan National University) ;
  • Yun, Mi-Jung (Department of Dentistry, Graduate School, Pusan National University)
  • 강선녀 (부산대학교 치과대학 치과보철학교실) ;
  • 조욱 (부산대학교 치과대학 치과보철학교실) ;
  • 전영찬 (부산대학교 치과대학 치과보철학교실) ;
  • 정창모 (부산대학교 치과대학 치과보철학교실) ;
  • 윤미정 (부산대학교 치과대학 치과보철학교실)
  • Published : 2009.07.31

Abstract

Statement of problem: Delamination of veneering porcelain from underlying ceramic substructures has been reported for zirconia-ceramic restorations. Colored zirconia cores for esthetics have been reported that their bond strength with veneered porcelain is weaker compared to white zirconia cores. Purpose: This study aimed to investigate the shear bond strength by manufacturing the veneering porcelain on the colored zirconia core, using the layering technique and heat-pressing technique, and to evaluate the clinical stability by comparing the result of this with that of conventional metal ceramic system. Material and methods: A Metal ceramic (MC) system was tested as a control group. The tested systems were Katana zirconia with CZR (ZB) and Katana Zirconia with NobelRondo Press (ZP). Thirty specimens, 10 for each system and control, were fabricated. Specimen disks, 3 mm high and 12 mm diameter, were fabricated with the lost-wax technique (MC) and the CAD-CAM (ZB and ZP). MC and ZB specimens were prepared using opaque and dentin veneering ceramics, veneered, 3 mm high and 2.8 mm in diameter, over the cores. ZP specimens were prepared using heat pressing ingots, 3 mm high and 2.8mm in diameter. The shear bond strength test was performed in a Shear bond test machine. Load was applied at a cross-head speed of 0.50 mm/min until failure. Mean shear bond strengths (MPa) were analyzed with the One-way ANOVA. After the shear bond test, fracture surfaces were examined by SEM. Results: The mean shear bond strengths (SD) in MPa were MC control 29.14 (2.26); ZB 29.48 (2.30); and ZP 29.51 (2.32). The shear bond strengths of the tested systems were not significantly different (P > .05). All groups presented cohesive and adhesive failures, and showed predominance of cohesive failures in ceramic veneers. Conclusion: 1. The shear bond strengths of the tested groups were not significantly different from the control group (P >.05). 2. There was no significant different between the layering technique and the heat pressing technique in the veneering methods on the colored zirconia core. 3. All groups presented cohesive and adhesive failures, and showed predominance of cohesive failures in ceramic veneers.

연구목적: 지르코니아-도재 수복물에 있어 상부도재와 코어 사이의 결합 실패가 종종 보고되어 왔으며 특히 착색지르코니아 코어는 기존의 백색 지르코니아보다 상부 도재와의 결합력이 약하다고 보고된 바 있다. 이 연구의 목적은 착색 지르코니아 코어 위의 상부도재를 적층식과 열가압식으로 제작하여 그 전단결합강도를 알아보고, 이를 전통적인 금속-도재간 결합강도와 비교하여 그 임상적 안정성을 평가하는 것이다. 연구 재료 및 방법: 금속도재군 (MC)을 대조군으로 하였다. 전통적인 금속도재군 (MC)과 지르코니아 코어를 사용한 두가지 군 (ZB, ZP)에 대하여 각 시스템별로 10개씩, 총 30개의 시편을 제작했다. CAD/CAM을 이용해 직경 12 mm, 높이 2.8 mm의 원판형 지르코니아 코어 (Katana zirconia)를 제작하고, 그 상부에 직경 2.8 mm, 높이 3 mm의 도재를 축성했다. ZB군은 CZR을 이용하여 적층법으로 상부도재를 제작했으며 ZP군은 NobelRondo Press ingot를 열가압하여 제작했다. Shear bond test machine (R&B Inc. Daejeon, Korea)을 이용하여 분당 0.50 mm의 속도로 파절이 일어날 때까지 전단력을 가하여 최대적용력 (N)을 측정하여 전단결합강도를 계산하고, 일원배치 분산분석을 사용하여 유의수준 5%에서 검정하였다. 파절양상을 알아보기 위하여 전자주사현미경을 통해 파절단면을 관찰했다. 결과: 평균 전단강도 (SD)는 MC 대조군 29.14 (2.26); ZB 29.48 (2.30); ZP 29.51 (2.32) 이었다. 실험군과 대조군 사이에 유의한 차이는 없었다. 모든 실험군에서 접착성 실패와 응집성 실패가 혼재된 양상을 보였으며, 응집성 실패가 우세했다. 결론: 1. 착색지르코니아 코어와 상부도재들 간의 전단결합강도는 금속 도재간 전단결합강도와 유의한 차이가 없었다. 2. 착색지르코니아 코어의 상부도재를 제작하는 방식에 있어 적층법과 열가압법 간의 전단결합강도에 유의한 차이는 없었다 (P > .05). 3. 파절양상은 응집성 파절이 우세한 가운데 접착성 파절과 응집성 파절이 혼재되어 나타났다.

Keywords

References

  1. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of allceramic materials. Part II. Zirconia-based dental ceramics. Dent Mater 2004;20:449-56 https://doi.org/10.1016/j.dental.2003.05.002
  2. Guazzato M, Albakry M, Swain MV, Ironside J. Mechanical properties of In-Ceram Alumina and In-Ceram Zirconia. Int J Prosthodont 2002;15:339-46
  3. Jeoung HC. Fracture strength of zirconia monolithic crowns. J Korean Acad Prosthdont 2006;44:157-64
  4. Denry Isabelle, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24:299-307 https://doi.org/10.1016/j.dental.2007.05.007
  5. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered allceramic restorations. Part II: Zirconia veneering ceramics. Dent Mater 2006;22:857-63 https://doi.org/10.1016/j.dental.2005.11.014
  6. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Effect of zirconia type on its bond strength with different veneer ceramics. J Prosthodont 2008;17:401-8 https://doi.org/10.1111/j.1532-849X.2008.00306.x
  7. Potiket N, Chiche G, Finger IM. In vitro fracture strength of teeth restored with different all-ceramic crown systems. J Prosthet Dent 2004;92:491-5 https://doi.org/10.1016/j.prosdent.2004.09.001
  8. Strub JR, Beschnidt SM. Fracture strength of 5 different all-ceramic crown systems. Int J Prosthodont 1998;11:602-9
  9. Gorman CM, Hill RG. Heat-pressed ionomer glass-ceramics. Part I: an investigation of flow and microstructure. Dent Mater 2003;19:320-6 https://doi.org/10.1016/S0109-5641(02)00061-1
  10. Gorman CM, Hill RG. Heat-pressed ionomer glass-ceramics. Part II. Mechanical property evaluation. Dent Mater 2004;20:252-61 https://doi.org/10.1016/S0109-5641(03)00100-3
  11. Kim CH, Jeon YC, Joeng CM, Lim JS. Effect of surface treatments of zirconia ceramic on the bond strength of resin cements. J Korean Acad Prosthodont 2004;42:386-96
  12. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25 https://doi.org/10.1016/S0142-9612(98)00010-6
  13. Vult von Steyern P, Carlson P, Nilner K. All-ceramic fixed partial dentures designed according to the DC-Zirkon technique. A 2-year clinical study. J Oral Rehabil 2005;32:180-7 https://doi.org/10.1111/j.1365-2842.2004.01437.x
  14. D$\ddot{u}$ndar M, Ozcan M, G$\ddot{o}$ke\c{c} B, C$\ddot{o}$mleko$\check{g}$lu E, Leite F, Valandro LF. Comparison of two bond strength testing methodologies for bilayered all-ceramics. Dent Mater 2007;23:630-6 https://doi.org/10.1016/j.dental.2006.05.004
  15. Guess PC, Kulis A, Witkowski S, Wolkewitz M, Zhang Y, Strub JR. Shear bond strengths between different zirconia cores and veneering ceramics and their susceptibility to thermocycling. Dent Mater 2008;24:1556-67 https://doi.org/10.1016/j.dental.2008.03.028
  16. D$\ddot{u}$ndar M, Ozcan M, Co$\ddot{o}$mlekoglu E, G$\ddot{u}$ng$\ddot{o}$r MA, Artun$\c{c}$ C. Bond strengths of veneering ceramics to reinforced ceramic core materials. Int J Prosthodont 2005;18:71-2
  17. Al-Dohan HM, Yaman P, Dennison JB, Razzoog ME, Lang BR. Shear strength of core-veneer interface in bi-layered ceramics. J Prosthet Dent 2004;91:349-55 https://doi.org/10.1016/j.prosdent.2004.02.009
  18. Aboushelib MN, Kler M, Feilzer AJ. Effect of veneering method on the fracture and bond strength of bilayered zirconia restoration. Int J Prosthodont 2008;21:237-40
  19. Hara AT, Pimenta LA, Rodrigues AL Jr. Influence of crosshead speed on resin-dentin shear bond strength. Dent Mater 2001;17:165-9 https://doi.org/10.1016/S0109-5641(00)00060-9
  20. ISO 9693. Metal-ceramic bond characterization (Schwickerath crack initiation test). Geneva, Switzerland: International Organization for standardization; 1999).
  21. Devigus A, Lombardi G. Shading Vita In-ceram YZ substructures: influence on value and chroma, part II. Int J Comput Dent 2004;7:379-88
  22. Shah K, Holloway JA, Denry IL. Effect of coloring with various metal oxides on the microstructure, color, and flexural strength of 3Y-TZP. J Biomed Mater Res B Appl Biomater 2008;87:329-37 https://doi.org/10.1002/jbm.b.31107
  23. Chevalier J, Deville S, Mu ¨nch E, Jullian R, Lair F. Critical effect of cubic phase on aging in 3mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials 2004;25:5539-45 https://doi.org/10.1016/j.biomaterials.2004.01.002
  24. Peterson IM, Wuttiphan S, Lawn BR, Chyung K. Role of microstructure on contact damage and strength degradation of micaceous glass-ceramics. Dent Mater 1998;14:80-9 https://doi.org/10.1016/S0109-5641(98)00013-X

Cited by

  1. 치과용 지르코니아 블럭의 착색시간에 따른 색조변화 관찰 vol.33, pp.3, 2011, https://doi.org/10.14347/kadt.2011.33.3.219
  2. 단일구조 지르코니아(zirconia) 전부도재관의 표면처리에 따른 전장도재와의 전단결합강도 vol.35, pp.2, 2009, https://doi.org/10.14347/kadt.2013.35.2.121