DOI QR코드

DOI QR Code

Allometric Equations for Estimating the Standing Biomass of Basidiocarps

버섯 자실체의 현존량 추정을 위한 상대생장식

  • Heo, Eun-Pork (Department of Biology, College of Natural Sciences, Kongju National University) ;
  • You, Young-Han (Department of Biology, College of Natural Sciences, Kongju National University)
  • 허은복 (공주대학교 자연과학대학 생물학과) ;
  • 유영한 (공주대학교 자연과학대학 생물학과)
  • Published : 2009.06.30

Abstract

The mushroom takes in charge of decomposer in ecosystem and its production is important indicator for sounded ecosystem function. To determine standing crop of basidiocarps(fruit body of mushroom), a weight must be measured by harvesting mushroom individual in the field. But this method has profound affection on the basidiocarps population or its surrounding condition due to habitat destruction. Thus, in this study, without harvesting any mushroom in the field, we developed allometric equation using some morphological parameters to estimate standing crop biomass of basidiocarps. Lentinula edodes, Pleurotus ostreatus, Flammulina velutipes and Conocybe tenera were used for allometry. Morphological variables of the mushroom were pileus diameter, pileus area, stipe length and stipe thickness. Consequently, all the experimental mushrooms species showed significantly correlation in biomass estimation of basidiocarps from allometric equation (p<0.05). As a result of this research, the standing biomass of the basidiocarps could be indirectly estimated with proportional expression, allometric equation drived from morphological characters.

버섯은 생태계에서 분해자로 역할을 담당하며, 그 양은 생태계의 건전성을 나타내는 중요한 지표이다. 버섯의 생산량을 알기 위해서는 개체를 수확하여 그 무게를 측정하여야 한다. 그러나 이 방법은 버섯 개체를 수확할 때 서식지를 훼손하고, 또한 한 지역에서 버섯의 동태를 장기적으로 관찰하는데 적합하지 못하다. 따라서 본 연구에서는 자실체의 외부 형질을 측정하고 이로부터 현존량을 추정하는 비례식을 만들었다. 사용한 버섯은 표고(L. edodes), 느타리(P. ostreatus), 팽이버섯(F. velutipes)과 종버섯(C. tenera)이다. 버섯의 자실체에서 형질 변수(갓 직경, PD; 갓 면적, PA; 대 길이, SL; 대 두께, ST)를 측정하고, 이 변수로부터 건조 생물량과의 회귀관계식을 구하였다. 그 결과 버섯 4종 모두 추정한 식에서 유의한 상관성을 보임으로써(p < 0.05), 외부 형질 변수로부터 유도된 비례식을 사용하여 버섯의 현존량을 예측할 수 있음이 확인되었다.

Keywords

References

  1. 김준호, 고성덕, 이희선, 오경환, 문형태, 임병선, 조경제, 조도순, 민병미, 서계홍, 이점숙, 정연숙, 이창석, 조강현, 이은주, 류태철, 이규송, 유영한, 김종욱. 2005. 현대생태학실험. p. 276. 교문사.
  2. 이규송, 유영한, 김종욱. 2005. 현대생태학실험. p. 276. 교문사. 남궁 정, 표재훈, 문형태. 2001. 상수리나무림의 계절별 버섯 생산량 및 영양염류 함량. 한국생태학회지 24: 315-322.
  3. 남궁 정, 표재훈, 문형태. 2001. 상수리나무림의 계절별 버섯 생산량 및 영양염류 함량. 한국생태학회지 24: 315-322.
  4. 이영노. 1988. 한국산 천연물자원; 직물자원. 한국생약학회 19: 53-55.
  5. 이지열. 1988. 원색한국버섯도감. 아카데미서적.
  6. 정근. 2008. 한국 북부지방의 산간 계류에 서식하는 수서곤충의 몸길이-질량 관계. 한국하천호수학회지 41(3): 320-330.
  7. 조덕현. 1996. 새로 규명된 고등균류의 자연자원. 한국자연보존협회 93: 23-38.
  8. Alan, H., Dave, R. and Ronni, E. B. 2007. The Structure and Function of Aquatic Ecosystems. British Ecological Society.
  9. Barbour, M. G., Burk, J. H. and Pitts, W. D. 1987. Terrestrial plant ecology. Second edi. pp. 141-144. The Benjamin/Cummings Pub. Co.
  10. Brewer, R. and McCann, M. T. 1982. Laboratory and field manual of ecology. Saunders College Publishing, Philadelphia.
  11. Cho, D. H. 1998. Developmental distribution on fungi in Mt. Jiri areas. KOSEF 961-0510-076-2.
  12. Dighton, J. and Boddy, L. 1989. Role of fungi in nitrogen, phosphorus and sulphur cycling in temperate forest ecosystems. In L. Boddy, R. Marchant and D. J. Read. (eds.). Nitrogen, phosphorus and sulphur utilization by fungi. pp. 269-278. Cambridge Univ. Press. Cambridge. U. K.
  13. Dixon, R. K., Wright, G. M., Behrn, G. T., Teskey, R. O. and Hinckley, T. M. 1980. Water deficits and root growth of ectomycorrhizal white oak seedling. Can. J. For. Res. 10:545-548. https://doi.org/10.1139/x80-089
  14. Duchesne, L. C., Peterson, R. L. and Ellis, B. E. 1988. Pine root exudate stimulates the synthesis of antifungal compounds by the ectomycorrhizal fungus Paxillus involutus. New Phytol. 108(4): 471-476. https://doi.org/10.1111/j.1469-8137.1988.tb04188.x
  15. Elsas, J. D. and Trevors, J. T. 1997. Modern soil microbiology. pp. 63-126. Marcel Dekker, Inc., New York.
  16. George, W. Cox. 1990. Laboratory Manual of General Ecology. pp. 1-249. Wm. C. Brown Publishers.
  17. Harley, J. L. 1972. Fungi in ecosystems. J. Applied Ecology 8:627-642. https://doi.org/10.2307/2402673
  18. Hikino, H., Kanno, C., Mirin, Y. and Hayashi, T. 1985. Isolation and hypoglycemic activity of Ganoderans A and B, glycans of Ganoderman lucidum fruit bodies. Planta. Med. 51: 339-340. https://doi.org/10.1055/s-2007-969507
  19. Ingold, C. T. and Hudson, H. J. 1993. The Biology of Fungi. pp. 1-217. Chapman & Hall.
  20. Iwan, H. and Zak, B. 1979. Acid phosphatase activity of six ectomycorrhizal fungi. Can. J. Bot. 57: 1203-1205. https://doi.org/10.1139/b79-144
  21. Kaarik, A. A. 1974. Decomposition of wood. In C. H. Dickinson and G. J. F. Pugh. (eds.). Biology of plant litter decomposition. pp. 129-174. Academic Press, New York.
  22. Kim, H. J., Ahn, M. S., Kim, G. H. and Kang, M. H. 2006. Physiological activity/nutrition : Antioxidative and Antimicrobial Activities of Pleurotus eryngii extra prepared from different aerial part. Kor. J. Food Sci. Technol. 38(6):799-804.
  23. Kucey, R. M. N. and Paul, E. A. 1982. Carbon flow, photosynthesis and N2 fixation in mycorrhizal and nodulated Faba Beans (Vicia fava L.). Soil Bio. Biochem. 14: 407-412. https://doi.org/10.1016/0038-0717(82)90013-X
  24. Lee, J. W., Chung, C. H., Jeong, H. J. and Lee, K. H. 1990. Anticomplementary and antitumor activities of the Ikal, ectract from the mycelia of Lentinus edodes IY-105. Kor. J. Appl. Microbiol. Biotechnol. 18: 571-577.
  25. Marx, D. H. 1972. Ectomycorrhizae as biological deterrent to pathogenic root infection. Ann. Rev. Phytopathol. 10: 429-454. https://doi.org/10.1146/annurev.py.10.090172.002241
  26. Marx, D. H. 1973. Growth of ectomycorrhizal and nonmycorrhizal short leaf pine seedlings in soil with Phytophthora cinnamomi. Phytopathology 63: 18-23. https://doi.org/10.1094/Phyto-63-18
  27. Marx, D. H. and Artman, J. D. 1979. Pisolithus tinctorius ectomycorrhizae improve survival and growth of pine seedling on acid coal spoils in Kentucky and Virhinia. Reclamation Review 2: 23-31.
  28. Mun, H. T., Namgung, J., Lee, Y. Y., Lee, J. T. and Kim, J. H. 2000. Mass loss and changes of mineral nutrients during the decomposition of Lepista nuda. Korean J. Ecology 23: 33-37.
  29. Mun, H. T. 2000. Mass loss and mineral nutrients during the decomposition of mushrooms, Russula alboareolata and Lactarius violascens. Korea J. Biol. Sci. 4:51-55. https://doi.org/10.1080/12265071.2000.9647523
  30. Mun, H. T. 2006. Biomass estimation of shrub Lindera obtusiloba by Allometry. J. Ecol. Field Biol. 29(5): 485-488. https://doi.org/10.5141/JEFB.2006.29.5.485
  31. Navratil, S. and Rochon, G. C. 1981. Enhanced root and shoot development of poplar cuttings induced by Pisolithus tinctorius inoculum. Can. J. For. Res. 11: 844-848. https://doi.org/10.1139/x81-124
  32. Park, W. H. 1991. Colored fungi of Korea. Kyo-Hak Publishing Co. Ltd.
  33. Raven, H. P. and Johnson, G. B. 1995. Understanding Biology. Wm. C. Brown Communications Inc. Dubuque.
  34. Rochefort, L., Vitt, D. H. and Bayley, S. E. 1990. Growth, production and decomposition dynamics of Sphagnum under natural and experimentally acidified conditions. Ecology 71:1986-2000. https://doi.org/10.2307/1937607
  35. Smith, S. S. E. 1980. Mycorrhizas of autotrophic plants. Biological Review 55: 475-510. https://doi.org/10.1111/j.1469-185X.1980.tb00701.x
  36. Stark, N. 1972. Nutrient cycling pathways and litter fungi. Bioscience 22: 355-360. https://doi.org/10.2307/1296341
  37. Stroo, H. F. and Alexander. M. 1985. Effect of simulated acid rain on mycorrhizal infection of Pinus strobus L. Water Air Soil Pollut. 25: 107-114. https://doi.org/10.1007/BF00159629
  38. Suzuki, S. and Oshima, S. 1976. Influence of Shitake (Lentinus edodes) on human serum cholesterol. Mushroom Sci. 9: 463-467.