DOI QR코드

DOI QR Code

탄산화 및 비탄산화된 콘크리트의 투수계수의 해석 기법 개발

Analytical Modeling for Microstructural Permeability Coefficient of (Non)Carbonated Concrete

  • 윤인석 (인덕대학 건설정보공학과)
  • Yoon, In-Seok (Dept. of Construction Info. Engineering, Induk Institute of Technology)
  • 발행 : 2009.06.30

초록

콘크리트의 투수계수는 콘크리트 구조물의 내구성능 및 미세구조의 밀실성을 판단할 수 있는 핵심적인 재료 매개변수이다. 투수계수를 산정하기 위한 많은 연구들이 있었으나, 시멘트페이스트 및 골재 각각이 콘크리트의 투수성능에 미치는 영향을 다룬 연구는 드물다. 더우기, 탄산화가 염소이온의 확산계수에 큰 영향을 미칠 수 있음에도 불구하고, 탄산화된 콘크리트에 대한 확산계수를 다룬 연구는 매우 드문 실정이다. 본 연구의 목적은 탄산화 및 비탄산화된 콘크리트의 투수계수를 추정할 수 있는 기초적 접근방법을 개발하는 것이다. 본 연구에서는 미세구조 모델 및 시멘트의 경화특성을 기초로 투수계수를 산정할 수 있는 해석적 기법이 개발되었는데, 시간단계별로 변화하는 투수계수의 해석과 탄산화된 콘크리트의 투수계수를 계산할 수 있다. 탄산화된 콘크리트에서 감소된 공극량이 계산되었으며 이는 투수계수의 산정에 이용되었다. 해석 결과는 실험적 결과를 얻어서 상호비교하여 검증하였다.

Permeability coefficient of concrete is a substaintial key parameter for understanding the durability performance of concrete and its microstructural densification. Many researches for the issue have been accomplished, however, it is very rare to deal with the theoretical study on permeability coefficient in connection with carbonation of concrete and the the effect of volumetric fraction of cement paste or aggregate on the permeability coefficient. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on the permeability coefficient of concrete. The purpose of this study is to establish a fundamental approach to compute the permeability coefficeint of (non)carbonated concrete. When simulating a microstructural characteristics as a starting point for deriving a model for the permeability coefficient by the numerical simulation program for cementitious materials, HYMOSTRUC, a more realistic formulation can be achieved. For several compositions of cement pastes, the permeability coefficient was calculated with the analytical formulation, followed by a microstructure-based model. Emphasis was on the microstructural changes and its effective change of the permeability coefficient of carbonated concrete. For carbonated concrete, reduced porosity was calculated and this was used for calculating the permeability coefficeint. The computational result was compared with experimental outcome.

키워드

참고문헌

  1. RILEM Report 12, Performance Criteria for Concrete Durability, J. Kropp and H. K. Hilsdorf(Eds.), E & FN SPON, 1995, 327 pp.
  2. 윤인석, 김은겸, 이창수, “중성화의 영향을 고려한 콘크리트의 염소이온 확산계수 산정에 대한 해석적 기법 연구,” 대한토목학회 논문집, 27권, 4A호, 2007, pp. 617-625
  3. Nyame, B. K. and Illston, J. M., “Capillary Pore Structure and Permeability of Hardened Cement Paste,” Proc. 7th International Congress on the Chemistry of Cement, Paris, France, Vol. 3, No. 4, 1980, pp. 181-185
  4. Mehta, P. K. and Manmohan, C., “Pore Size Distribution and Permeability of Hardened Cement Paste,” 7th International Congress on the Chemistry of Cement, Paris, France, Vol. 3, No. 7, 1980, pp. 1-5
  5. Dullien, F. A. L., “Characterization of Porous Media-Pore Level,” Transport in Porous Media, Vol. 6, 1991, pp. 581-60
  6. Katz, A. J. and Thompson, A. H., “Quantitative Prediction of Permeability in Porous Rock,” Physical Review. B, Vol. 34, 1986, pp. 8179-8181 https://doi.org/10.1103/PhysRevB.34.8179
  7. Christensen, B. J., Mason, T. O., and Jennings, H. M., “Comparison of Measured and Calculated Permeabilities for Hardened Cement Pastes,” Cement and Concrete Research, Vol. 26, No. 9, 1996, pp. 1325-1334 https://doi.org/10.1016/0008-8846(96)00130-5
  8. Ye, G., “Experimental Study and Numerical Simulation of the Development of the Microstructure and Permeability of the Cementitious Materials,” Ph.D Dissertation of Delft University of Technology, The Netherlands, 2003
  9. 윤인석, “시멘트 수화특성 및 탄산화를 고려한 콘크리트의 임계 염소이온량에 대한 해석적 기법,” 콘크리트학회논문집, 19권, 3호, 2007, pp. 367-375
  10. Koenders E. A. B., “Simulation of Volume Changes in Hardening Cement-Based Materials,” Ph.D Dissertation of Delft University of Technology, The Netherlands, 1997, 171 pp.
  11. Breugel, K. van, “Simulation of Hydration and Formation of Structures in Hardening Cement-Based Materials,” Ph.D Dissertation of Delft University of Technology, The Netherlands, 1991, 305 pp.
  12. Muskat, M., The Flow of Homogeneous Fluids through Porous Media, McGraw-Hill Book Company Inc., New York, 1937, 763 pp.
  13. Hanaor, A. and Sullivan, P. J. E., “Factors Affecting Concrete Permeability to Cryogenic Fluids,” Magazine of Concrete Research, Vol. 35, No. 124, 1983, pp. 142-150 https://doi.org/10.1680/macr.1983.35.124.142
  14. Bear, J., Dynamics of Fluids in Porous Media, New York, London Amsterdam, American Elsevier Company, 1972, 764 pp.
  15. Dullien, F. A. L., “Characterization of Porous Media-Pore Level,” Transport in Porous Media, Vol. 6, 1991, pp. 581-60 https://doi.org/10.1007/BF00137851
  16. Hirsch, T. J., “Modulus of Elasticity of Concrete Affected by Elastic Moduli of Cement Paste Matrix and Aggregate,” Journal of the American Concrete Institute, No. 59-12, 1962, pp. 427-451
  17. Neville, A. M., Properties of Concrete, Fourth Edition, London, 1995, pp. 490-494
  18. Papadakis, V. G. and Vayenas, C. G.., “Physical and Chemical Characteristics Affecting the Durability of Concrete,” ACI Materials Journal, Vol. 8, No. 2, 1991, pp. 186-196
  19. Mehta, P. K. and Monteiro, P. J. M., Concrete-Microstructure, Properties and Materials, Third Edition, New York, 2006, pp. 125-130

피인용 문헌

  1. Analytical Study on Structural Behavior of Surface Damaged Concrete Member by Calcium Leaching Degradation vol.18, pp.4, 2014, https://doi.org/10.11112/jksmi.2014.18.4.022
  2. Analysis on Adsorption Rate & Mechanism on Chloride Adsorption Behavior with Cement Hydrates vol.27, pp.1, 2015, https://doi.org/10.4334/JKCI.2015.27.1.085
  3. Transport Coefficients and Effect of Corrosion Resistance for SFRC vol.22, pp.6, 2010, https://doi.org/10.4334/JKCI.2010.22.6.867