DOI QR코드

DOI QR Code

Glycosaminoglycan Degradation-Inhibitory Lactic Acid Bacteria Ameliorate 2,4,6-Trinitrobenzenesulfonic Acid-Induced Colitis in Mice

  • Lee, Bo-Mi (Department of Life and Nanopharmaceutical Sciences and Department of Pharmaceutical Science, Kyung Hee University) ;
  • Lee, Jung-Hee (Department of Life and Nanopharmaceutical Sciences and Department of Pharmaceutical Science, Kyung Hee University) ;
  • Lee, Hye-Sung (Department of Life and Nanopharmaceutical Sciences and Department of Pharmaceutical Science, Kyung Hee University) ;
  • Bae, Eun-Ah (Department of Life and Nanopharmaceutical Sciences and Department of Pharmaceutical Science, Kyung Hee University) ;
  • Huh, Chul-Sung (R & D Center, Korea Yakult Co., Ltd.) ;
  • Ahn, Young-Tae (R & D Center, Korea Yakult Co., Ltd.) ;
  • Kim, Dong-Hyun (Department of Life and Nanopharmaceutical Sciences and Department of Pharmaceutical Science, Kyung Hee University)
  • Published : 2009.06.30

Abstract

To evaluate the effects of lactic acid bacteria (LAB) in inflammatory bowel diseases (IBD), we measured the inhibitory effect of several LAB isolated from intestinal microflora and commercial probiotics against the glycosaminoglycan (GAG) degradation by intestinal bacteria. Bifidobacterium longum HY8004 and Lactobacillus plantarum AK8-4 exhibited the most potent inhibition. These LAB inhibited colon shortening and myeloperoxidase production in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced experimental colitic mice. These LAB also blocked the expression of the proinflammatory cytokines, IL-$1{\beta}$ and TNF-$\alpha$, as well as of COX-2, in the colon. LAB also blocked activation of the transcription factor, NF-${\kappa}B$, and expression of TLR-4 induced by TNBS. In addition, LAB reduced the TNBS-induced bacterial degradation activities of chondroitin sulfate and hyaluronic acid. These findings suggest that GAG degradation-inhibitory LAB may improve colitis by inhibiting inflammatory cytokine expression via TLR-4-linked NF-${\kappa}B$ activation and by inhibiting intestinal bacterial GAG degradation.

Keywords

References

  1. Bai, A., N. Lu, Y. Guo, and X. Fan. 2008. Tanshinone IIA ameliorates trinitrobenzene sulfonic acid (TNBS)-induced murine colitis. Dig. Dis. Sci. 53: 421-428 https://doi.org/10.1007/s10620-007-9863-8
  2. Barthet, M., L. Dubucquoy, S. Garcia, S. Gasmi, P. Descreumaux, J. F. Colombel, J. C. Grimaud, J. Iovanna, and J. C. Dagorn. 2003. Pancreatic changes in TNBS-induced colitis in mice. Gastroenterol. Clin. Biol. 27: 895-900
  3. Belmiro, C. L., H. S. Souza, C. C. Elia, M. T. Castelo-Branco, F. R. Silva, R. L. Machado, and M. S. Pavao. 2005. Biochemical and immunohistochemical analysis of glycosaminoglycans in inflamed and non-inflamed intestinal mucosa of patients with Crohn's disease. Int. J .Colorectal Dis. 20: 295-304 https://doi.org/10.1007/s00384-004-0677-2
  4. Benno, P., C. E. Leijonmarck, U. Monsen, and A. Uribe. 1993. Functional alteration of the microflora in patients with ulcerative colitis. Scand. J. Gastroenterol. 28: 839-844 https://doi.org/10.3109/00365529309104019
  5. Berrebi, D., J. Languepin, L. Ferkdadji, A. Foussat, P. De Lagausie, R. Paris, et al. 2003. Cytokines, chemokine receptors, and homing molecule distribution in the rectum and stomach of pediatric patients with ulcerative colitis. J. Pediatr. Gastroenterol. Nutr. 37: 300-308 https://doi.org/10.1097/00005176-200309000-00018
  6. Binder, V. 2004. Epidemiology of IBD during the twentieth century: An integrated view. Best Pract. Res. Clin. Gastroenterol. 18: 463-479 https://doi.org/10.1016/j.bpg.2003.12.002
  7. Bowen, J. M., A. M. Stringer, R. J. Gibson, A. S. Yeoh, S. Hannam, and D. M. Keefe. 2007. VSL#3 probiotic treatment reduces chemotherapy-induced diarrhea and weight loss. Cancer Biol. Ther. 6: 1449-1454 https://doi.org/10.4161/cbt.6.9.4622
  8. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  9. Campieri, M. and P. Gionchetti. 1999. Probiotics in inflammatory bowel disease: New insight to pathogenesis or a possible therapeutic alternative. Gastroenterology 116: 1246-1260 https://doi.org/10.1016/S0016-5085(99)70029-6
  10. Cario, E. and D. K. Podolsky. 2000. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun. 68:7010-7017 https://doi.org/10.1128/IAI.68.12.7010-7017.2000
  11. Chandran, P., S. Satthapom, A. Robins, and O. Eremin. 2003. Inflammatory bowel disease: Dysfunction of GALT and gut bacterial flora (II). Surgeon 1:125-136 https://doi.org/10.1016/S1479-666X(03)80091-4
  12. Chung, K. T., G. E. Fulk, and M. W. Slein. 1975. Tryptophanase of fecal flora as a possible factor in the etiology of colon cancer. J. Natl. Cancer Inst. 54: 1073-1078 https://doi.org/10.1093/jnci/54.5.1073
  13. Chung, Y. W., J. H. Choi, T. Y. Oh, C. S. Eun, and D. S. Han. 2008. Lactobacillus casei prevents the development of dextran sulphate sodium-induced colitis in toll-like receptor 4 mutant mice. Clin. Exp. Immunol. 151: 182-189 https://doi.org/10.1111/j.1365-2249.2007.03549.x
  14. Collins, M. P. and G. R. Gibson. 1999. Probiotics, prebiotics, and synbiotics: Approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 69: s1052-s1057 https://doi.org/10.1093/ajcn/69.5.1052s
  15. Duchmann, R., I. Kaiser, E. Hermann, W. Mayet, K. Ewk, and K. H. Meyer zum Buschenfelde. 1995. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease. Clin. Exp. Immunol. 102: 448-455 https://doi.org/10.1111/j.1365-2249.1995.tb03836.x
  16. Fukuta, M., A. Chen, A. Klepper, S. Krishnareddy, A. S. Vamadevan, L. S. Thomas, et al. 2006. Cox-2 is regulated by toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology 131: 862-877 https://doi.org/10.1053/j.gastro.2006.06.017
  17. Ganguly, N. K., J. G. Kingham, B. Lloyd, R. S. Lloyd, C. P. Price, D. R. Triger, and R. Wright. 1978. Acid hydrolases in monocytes from patients with inflammatory bowel disease, chronic liver disease, and rheumatoid arthritis. Lancet 1: 1073-1075
  18. Gesner, B. M. and C. R. Jenkin. 1961. Production of heparinase by bacteroides. J. Bacteriol. 81: 595-604
  19. Gilliland, S. E. 1990. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 7: 175-188
  20. Grabig, A., D. Paclik, C. Guzy, A. Dankof, D. C. Baumgart, J. Erckenbrecht, et al. 2006. Escherichia coli strain Nissle 1917 ameliorates experimental colitis via toll-like receptor 2- and tolllike receptor 4-dependent pathways. Infect. Immun. 74: 4075-4082 https://doi.org/10.1128/IAI.01449-05
  21. Han, S. Y., C. S. Huh, Y. T. Ahn, K. S. Lim, Y. J. Baek, and D. H. Kim. 2005. Hepatoprotective effect of lactic acid bacteria. J. Microbiol. Biotechnol. 15: 887-890
  22. Han. W., A. Mercenier, A. Ait-Belgnaoui, S. Pavan, F. Lamine, I. I. van Swam, et al. 2006. Improvement of an experimental colitis in rats by lactic acid bacteria producing superoxide dismutase. Inflamm. Bowel Dis. 12: 1044-1052 https://doi.org/10.1097/01.mib.0000235101.09231.9e
  23. Hill, M. J. and D. S. Drasar. 1975. The normal colonic bacterial flora. Gut 16: 318-323 https://doi.org/10.1136/gut.16.4.318
  24. Ingalls, R. R., H. Heine, E. Lien, A. Yoshimura, and D. Golenbock. 1999. Lipolysaccharide recognition, CD14, and lipolysaccharide receptors. Infect. Dis. Clin. N. Am. 13: 341-353 https://doi.org/10.1016/S0891-5520(05)70078-7
  25. Keighley, M. R. and Y. Arabi. 1978. Influence of inflammatory bowel disease in intestinal microflora. Gut 19:1099-1104 https://doi.org/10.1136/gut.19.12.1099
  26. Kruis, W. 2004. Antibiotics and probiotics in inflammatory bowel disease. Aliment. Pharmacol. Ther. 20(Suppl. 4): 75-78 https://doi.org/10.1111/j.1365-2036.2004.02051.x
  27. Lee, H. S., S. Y. Han, E. A. Bae, C. S. Huh, Y. T. Ahn, J. H. Kee, and D. H. Kim. 2008. Lactic acid bacteria inhibit proinflammatory cytokine expression and bacterial glycosaminoglycan degradation activity in dextran sulfate sodiuminduced colitic mice. Int. Immunopharmacol. 8: 574-580 https://doi.org/10.1016/j.intimp.2008.01.009
  28. Mullane, K. M., R. Kraemer, and B. Smith. 1985. Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium. J. Pharmacol. Methods 14: 157-167 https://doi.org/10.1016/0160-5402(85)90029-4
  29. Onderdonk, A. B., J. A. Aermos, and J. G. Barblett. 1979. The role of the intestinal microflora in experimental colitis. Am. J. Clin. Nutr. 30: 1819-1825
  30. Peran, L., S. Sierra, M. Comalada, F. Lara-Villoslada, E. Bailon, A. Nieto, et al. 2007. A comparative study of the preventative effects exerted by two probiotics, Lactobacillus reuteri and Lactobacillus fermentum, in the trinitrobenzenesulfonic acid model of rat colitis. Br. J. Nutr. 97:96-103 https://doi.org/10.1017/S0007114507257770
  31. Perdigon, G.., W. E. B. de Jorrat, S. F. de Petrino, and M. Valerde de Budeguer. 1991. Effect of oral administration of Lactobacillus casei on various biological functions of the host. Food Agric. Immunol. 3: 93-102 https://doi.org/10.1080/09540109109354735
  32. Rhodes, J. M., R. Gallimore, and E. Elias. 1985. Fecal mucus degrading glycosidase in ulcerative colitis and Crohn's disease. Gut 26: 761-765 https://doi.org/10.1136/gut.26.8.761
  33. Sartor, R. B. 1994. Cytokines in intestinal inflammation:Pathophysiological and clinical consideration. Gastroenterology 106: 533-539 https://doi.org/10.1016/0016-5085(94)90614-9
  34. Sartor, R. B. 2004. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: Antibiotics, probiotics and prebiotics. Gastroenterology 126: 1620-1633 https://doi.org/10.1053/j.gastro.2004.03.024
  35. Salyers, A. A., J. R. Vercellotti, S. E. H. West, and T. D. Wilkins. 1977. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl. Environ. Microbiol. 34: 319-322
  36. Shin, Y. W., E. A. Bae, S. S. Kim, Y. C. Lee, and D .H. Kim. 2005. Effect of ginsenoside Rb1 and compound K in chronic oxazolone-induced mouse dermatitis. Int. Immunopharmacol. 5:1183-1191 https://doi.org/10.1016/j.intimp.2005.02.016
  37. Simon, G. L. and S. L. Gorbach. 1984. Intestinal flora in health and disease. Gastroenterology 86: 174-193
  38. Singer, I. I., D. W. Kawka, S. Schloemann, T. Tessner, T. Riehl, and W. F. Stenson. 1998. Cyclooxygenase-2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology 115: 297-306 https://doi.org/10.1016/S0016-5085(98)70196-9
  39. Stiles, M. E. and W. H. Holzapfel. 1997. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36: 1-29 https://doi.org/10.1016/S0168-1605(96)01233-0

Cited by

  1. Bifidobacterium bifidum reduces apoptosis in the intestinal epithelium in necrotizing enterocolitis vol.299, pp.5, 2009, https://doi.org/10.1152/ajpgi.00131.2010
  2. Lessons from probiotic–host interaction studies in murine models of experimental colitis vol.55, pp.10, 2009, https://doi.org/10.1002/mnfr.201100139
  3. Treatment with Bifidobacterium bifidum 17 partially protects mice from Th1-driven inflammation in a chemically induced model of colitis vol.149, pp.1, 2011, https://doi.org/10.1016/j.ijfoodmicro.2010.12.020
  4. Assessment of the human faecal microbiota: I. Measurement and reproducibility of selected enzymatic activities vol.42, pp.8, 2009, https://doi.org/10.1111/j.1365-2362.2012.02660.x
  5. Nutritional and Probiotic Supplementation in Colitis Models vol.57, pp.11, 2009, https://doi.org/10.1007/s10620-012-2284-3
  6. Modulation of anti-inflammatory response in lipopolysaccharide stimulated human THP-1 cell line and mouse model at gene expression level with indigenous putative probiotic lactobacilli vol.8, pp.6, 2009, https://doi.org/10.1007/s12263-013-0347-5
  7. Active hexose-correlated compound and Bifidobacterium longum BB536 exert symbiotic effects in experimental colitis vol.52, pp.2, 2009, https://doi.org/10.1007/s00394-012-0347-z
  8. Ingested hyaluronan moisturizes dry skin vol.13, pp.1, 2009, https://doi.org/10.1186/1475-2891-13-70
  9. POSITIVE CORRELATION BETWEEN DISEASE ACTIVITY INDEX AND MATRIX METALLOPROTEINASES ACTIVITY IN A RAT MODEL OF COLITIS vol.51, pp.2, 2009, https://doi.org/10.1590/s0004-28032014000200007
  10. Ingestion of hyaluronans (molecular weights 800 k and 300 k) improves dry skin conditions: a randomized, double blind, controlled study vol.56, pp.1, 2009, https://doi.org/10.3164/jcbn.14-81
  11. Highly Heterogeneous Probiotic Lactobacillus Species in Healthy Iranians with Low Functional Activities vol.10, pp.12, 2009, https://doi.org/10.1371/journal.pone.0144467
  12. Efficacy of Lactobacillus plantarum in prevention of inflammatory bowel disease vol.5, pp.None, 2018, https://doi.org/10.1016/j.toxrep.2018.02.007
  13. Hyaluronan: A Neuroimmune Modulator in the Microbiota-Gut Axis vol.11, pp.1, 2009, https://doi.org/10.3390/cells11010126