References
- Bae, S. and Y. Kim. 2004. Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth, Plutella xylostella. Comp. Biochem. Physiol. 138A: 39-44
- Basio, N. A. and Y. Kim. 2006. Additive effect of teratocytes and calyx fluid from Cotesia plutellae on immunosuppression of Plutella xylostella. Physiol. Entomol. 31: 341-347 https://doi.org/10.1111/j.1365-3032.2006.00524.x
- Choi, J. Y., J. Y. Roh, J. W. Kang, H. J. Shim, S. D. Woo, B. R. Jin, M. S. Li, and Y. H. Je. 2005. Genomic segments cloning and analysis of Cotesia plutellae polydnavirus using plasmid capture system. Biochem. Biophys. Res. Commun. 332: 487-493 https://doi.org/10.1016/j.bbrc.2005.04.146
- Cui, L., A. Soldevila, and B. A. Webb. 1997. Expression and hemocyte-targeting of a Campoletis sonorensis polydnavirus cysteine-rich gene in Heliothis virescens larvae. Arch. Insect Biochem. Physiol. 36: 251-271 https://doi.org/10.1002/(SICI)1520-6327(1997)36:4<251::AID-ARCH2>3.0.CO;2-V
- Dupuy, C., E. Huguet, and J. D. Drezen. 2006. Unfolding the evolutionary story of polydnaviruses. Virus Res. 117: 81-89 https://doi.org/10.1016/j.virusres.2006.01.001
- Espagne, E., D. Catherine, E. Huguet, L. Cattolico, B. Provost, N. Martins, M. Poirie, G. Periquet, and J. M. Drezen. 2004. Genome sequence of a polydnavirus: Insights into symbiotic virus evolution. Science 306: 286-289 https://doi.org/10.1126/science.1103066
- Fath-Goodin, A., T. A. Gill, and B. A. Webb. 2006. Effect of Campoletis sonorensis ichnovirus cys-motif proteins on Heliothis virescens larval development. J. Insect Physiol. 52:576-585 https://doi.org/10.1016/j.jinsphys.2006.02.005
- Gad, W. and Y. Kim. 2002. A viral histone H4 encoded by Cotesia plutellae bracovirus inhibits haemocyte-spreading behaviour of the diamondback moth, Plutella xylostella. J. Gen. Virol. 89: 931-938 https://doi.org/10.1099/vir.0.83585-0
-
Ibrahim, A. M. A., J. Y Choi, Y. H Je, and Y. Kim. 2005. Structure and expression profile of two putative Cotesia plutellae bracovirus genes (CpBV-H4 and CpBV-E94
${\alpha}$ ) in parasitized P. xylostella. J. Asia-Pac. Entomol. 8: 359-366 https://doi.org/10.1016/S1226-8615(08)60258-7 - Ibrahim, I. M. A. and Y. Kim. 2007. Protein tyrosine phosphatases of Cotesia plutellae bracovirus inhibit insect cellular immune responses. Naturwissenchaften 95: 25-32 https://doi.org/10.1007/s00114-007-0290-7
- Ibrahim, A. M. A. and Y. Kim. 2008. Protein tyrosine phosphatases of Cotesia plutellae bracovirus inhibit insect cellular immune responses. Naturwissenschaften 95: 25-32 https://doi.org/10.1007/s00114-007-0290-7
- Kim, Y. 2005. Identification of host translation inhibitory factor of Campoletis sonorensis ichnovirus on the tobacco budworm, Heliothis virescens. Arch. Insect Biochem. Physiol. 59: 230-244 https://doi.org/10.1002/arch.20074
- Kim, Y. 2006. Polydnavirus and its novel application to insect pest control. Kor. J. Appl. Entomol. 45: 241-259
- Kim, Y., N. A. Basio, A. M. A. Ibrahim, and S. Bae. 2006. Gene structure of Cotesia plutellae bracovirus (CpBV)-IkB and its expression pattern in the parasitized diamondback moth, Plutella xylostella. Kor. J. Appl. Entomol. 45: 15-24
- Kim, Y., J. Y. Choi, and Y. H. Je. 2007. Cotesia plutellae bracovirus genome and its function in altering insect physiology. J. Asia-Pac. Entomol. 10: 181-191 https://doi.org/10.1016/S1226-8615(08)60351-9
- Kwon, B. and Y. Kim. 2008. Transient expression of an EP1-like gene encoded in Cotesia plutellae bracovirus suppresses the hemocyte population in the diamondback moth, Plutella xylostella. Dev. Comp. Immunol. 32: 932-942 https://doi.org/10.1016/j.dci.2008.01.005
- Li, X. and B. A Webb. 1994. Apparent functional role for a cysteine-rich polydnavirus protein in suppression of the insect cellular immune response. J. Virol. 68: 7482-7489
- Nalini, M., J. Y. Choi, Y. H. Je, I. Hwang, and Y. Kim. 2008. Immunoevasive property of a polydnaviral product, CpBVlectin, protects the parasitoid egg from hemocytic encapsulation of Plutella xylostella (Lepidoptera: Yponomeutidae). J. Insect Physiol. (In press.)
- Nalini, M. and Y. Kim. 2007. A putative protein inhibitory factor encoded in Cotesia plutellae bracovirus suppresses host hemocyte-spreading behavior. J. Insect Physiol. 53: 1283-1292 https://doi.org/10.1016/j.jinsphys.2007.07.004
- SAS Institute, Inc. 1989. SAS/STAT User's Guide, release 6.03 ed. SAS Institute, Cary, NC
- Tanaka, K., R. Lapointe, W. E. Barney, A. M. Makkay, D. Stoltz, M. Cusson, and B. A. Webb. 2007. Shared and speciesspecific features among ichnovirus genomes. Virology 363: 26-35 https://doi.org/10.1016/j.virol.2006.11.034
- Webb, B. A. 1998. Polydnavirus Biology, Genome Structure, and Evolution, pp. 105-139. In L. K. Miller and L. A. Ball (eds.), The Insect Viruses. Plenum, New York
- Webb, B. A. and M. R. Strand. 2005. The Biology and Genomics of Polydnaviruses, pp. 260-323. In L. I. Gilbert, K. Iatrou, and S. S. Gill (eds.), Comprehensive Molecular Insect Science, Vol. 5. Elsevier Press, San Diego
- Webb, B. A., M. R. Strand, S. E. Dickey, M. H. Beck, R. S. Hilgarth, W. E. Barney, et al. 2006. Polydnavirus genomes reflect their dual roles as mutualists and pathogens. Virology 347: 160-174 https://doi.org/10.1016/j.virol.2005.11.010
Cited by
- A SERI technique reveals an immunosuppressive activity of a serine-rich protein encoded in Cotesia plutellae bracovirus vol.43, pp.4, 2009, https://doi.org/10.5483/bmbrep.2010.43.4.279
- Translation inhibitory factors encoded in Cotesia plutellae bracovirus require the 52-UTR of a host mRNA target vol.156, pp.2, 2009, https://doi.org/10.1016/j.cbpb.2010.03.001
- Transient expression of specific Cotesia plutellae bracoviral segments induces prolonged larval development of the diamondback moth, Plutella xylostella vol.56, pp.6, 2009, https://doi.org/10.1016/j.jinsphys.2010.01.013
- Transient transcription of a putative RNase containing BEN domain encoded in Cotesia plutellae bracovirus induces an immunosuppression of the diamondback moth, Plutella xylostella vol.105, pp.2, 2009, https://doi.org/10.1016/j.jip.2010.06.003
- CpBV-ELP1 발현 재조합 벡큘로바이러스의 대량 증식과 파밤나방 방제 기술 vol.19, pp.3, 2009, https://doi.org/10.7585/kjps.2015.19.3.279