References
- Adams, M. (ed.). 1959. Bacteriophages. Interscience Publishers, London, United Kingdom
- Benedict, L. R. N. and R. S. Flamiano. 2004. Use of bacteriophages as therapy for Escherichia coli-induced bacteremia in mouse models. Phil. J. Microbiol. Infect. Dis. 33: 47-51
- Biswas, B., S. Adhya, P. Washart, B. Paul, A. N. Trostel, B. Powell, R. Carlton, and C. R. Merril. 2002. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun. 70:204-210 https://doi.org/10.1128/IAI.70.1.204-210.2002
- Brans, T. A., R. P. Dutrieux, M. J. Hoekstra, R. W. Kreis, and J. S. du Pont 1994. Histopathological evaluation of scalds and contact burns in the pig model. Burns 20: 548-551
- Bruttin, A. and H. Brussow. 2005. Human volunteers receiving Escherichia coli phage T4 orally: A safety test of phage therapy. Antimicrob. Agents Chemother. 49: 2874-2878 https://doi.org/10.1128/AAC.49.7.2874-2878.2005
- Capparelli, R., I. Ventimiglia, S. Roperto, D. Fenizia, and D. Iannelli. 2006. Selection of an Escherichia coli O157:H7 bacteriophage for persistence in the circulatory system of mice infected experimentally. Clin. Microbiol. Infect. 12: 248-253 https://doi.org/10.1111/j.1469-0691.2005.01340.x
- Casewell, M. W. and I. Phillips. 1981. Aspects of the plasmid mediated antibiotic resistance and epidemiology of Klebsiella species. Am. J. Med. 70: 459-462 https://doi.org/10.1016/0002-9343(81)90788-9
- Cerveny, K. E., A. DePaola, D. H. Duckworth, and P. A. Gulig. 2002. Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice. Infect. Immun. 70: 6251-6262 https://doi.org/10.1128/IAI.70.11.6251-6262.2002
- Church, D., S. Elsayed, O. Reid, B. Winston, and R. Lindsay. 2006. Burn wound infections. Clin. Microbiol. Rev. 19: 403-434 https://doi.org/10.1128/CMR.19.2.403-434.2006
- Cryz, S. J. Jr., E. Furer, and R. Germanier. 1984. Experimental Klebsiella pneumoniae burn wound sepsis: Role of capsular polysaccharide. Infect. Immun. 43:440-441
- Dale, R. M., K. G. Schnell, and J. P. Wong. 2004. Therapeutic efficacy of 'Nubiotics' against burn wound infection by Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 48:2918-2923 https://doi.org/10.1128/AAC.48.8.2918-2923.2004
- Danelishvili, L., L. S. Young, and L. E. Bermudez. 2006. In vivo efficacy of phage therapy for Mycobacterium avium infection as delivered by a nonvirulent Mycobacterium. Microb. Drug Resist. 12: 1-6 https://doi.org/10.1089/mdr.2006.12.1
- Inal, J. M. 2003. Phage therapy: A reappraisal of bacteriophages as antibiotics. Arch. Immunol. Ther. Exp. (Warsaw) 51: 237-244
- Ioseliani, G. D., G. D. Meladze, N. S. Chkhetiia, M. G. Mebuke, and N. I. Kiknadze. 1980. Use of bacteriophage and antibiotics for prevention of acute postoperative empyema in chronic suppurative lung diseases. Grudn. Khir. 6: 63-67
- Kehinde, A. O., S. A. Ademola, A. O. Okesola, O. M. Oluwatosin, and R. Bakare. 2004. Pattern of bacterial pathogens in burn wound infections in Ibadan, Nigeria. Ann. Burns Fire Disast. 17: 12-15
- Levin, B. and J. J. Bull. 1996. Phage therapy revisited: The population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Am. Nat. 147: 881-898 https://doi.org/10.1086/285884
- Loc Carrillo, C. L., R. D. J. Atterbury, A. El-Shibiny, P. L. Connerton, E. Dillon, A. Scott, and I. F. Connerton. 2005. Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl. Environ. Microbiol. 71: 6554-6563 https://doi.org/10.1128/AEM.71.11.6554-6563.2005
- Lorch, A. 1999. Bacteriophages: An alternative to antibiotics? Biotech. Develop. Monitor 39: 14-17
-
Matsuzaki, S., M. Yasuda, H. Nishikawa, M. Kuroda, T. Ujihara, T. Shuin, et al. 2003. Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage
$\phi$ MR11. J. Infect. Dis. 187: 613-624 https://doi.org/10.1086/374001 - Matsuzaki, S., M. Rashel, J. Uchiyma, T. Ujihara, M. Kuroda, M. Ikeuchi, M. Fujieda, J. Wakiguchi, and S. Imai. 2005. Bacteriophage therapy: A revitalized therapy against bacterial infectious diseases. J. Infect. Chemother. 11: 211-219 https://doi.org/10.1007/s10156-005-0408-9
- McVay, C., S. M. Velasquez, and J. A. Fralick. 2007. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob. Agents Chemother. 51: 1934-1938 https://doi.org/10.1128/AAC.01028-06
- Merril, C. R., B. Biswas, R. Carlon, N. C. Jensen, G. J. Creed, S. Zullo, and S. Adhya. 1996. Long-circulating bacteriophage as antibacterial agents. Proc. Natl. Acad. Sci. U.S.A. 93: 3188-3192 https://doi.org/10.1073/pnas.93.8.3188
- Nasser, S., A. Mabrouk, and A. Maher. 2003. Colonization of burn wounds in Ain Shams University Burn Unit. Burns 29:229-233 https://doi.org/10.1016/S0305-4179(02)00285-1
- Ozumba, U. C. and B. C. Jiburum. 2000. Bacteriology of burn wounds in Enugu, Nigeria. Burns 26: 178-180 https://doi.org/10.1016/S0305-4179(99)00075-3
- Paissano, A. F., B. Spira, S. Cai, and A. C. Bombana. 2004. In vitro antimicrobial effects of bacteriophages on human dentin infected with Enterococcus faecalis ATCC 29212. Oral Microbiol. Immunol. 19: 327-330 https://doi.org/10.1111/j.1399-302x.2004.00166.x
- Rumbaugh, K. P., J. A. Griswold, B. H. Iglewski, and A. N. Hamood. 1999. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect. Immun. 67: 5854-5862
- Schembri, M. A., J. Blom, A. K. Krogfelt, and P. Klemm. 2005. Capsule and fimbria interaction in Klebsiella pneumoniae. Infect. Immun. 73: 4626-4633 https://doi.org/10.1128/IAI.73.8.4626-4633.2005
- Signori, M., S. Grappolini, E. Magliano, and L. Donati. 1992. Updated evaluation of the activity of antibiotics in a burn center. Burns 18: 500-503 https://doi.org/10.1016/0305-4179(92)90185-W
- Smith, H. W. and M. B. Huggins. 1982. Successful treatment of experimental Escherichia coli infections in mice using phages:Its general superiority over antibiotics. J. Gen. Microbiol. 128:307-318
- Stroj, L., B. Weber-Dabrowska, K. Partyka, M. Mulczyk, and M. Wojcik. 1999. Successful treatment with bacteriophage in purulent cerebrospinal meningitis in a newborn. Neurol. Neurochir. Pol. 3: 693-698
- Sulakvelidze, A., Z. Alavidze, and J. G. Morris Jr. 2001. Bacteriophage therapy. Antimicrob. Agents Chemother. 45:649-659 https://doi.org/10.1128/AAC.45.3.649-659.2001
- Theil, K. 2004. Old dogma, new tricks - 21st century phage therapy. Nat. Biotechnol. 22: 31-36 https://doi.org/10.1038/nbt0104-31
- Wang, J., B. Hu, M. Xu, Q. Yan, S. Liu, X. Zhu, ei al. 2006. Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. Int. J. Mol. Med. 17: 309-317
- Weber-Dabrowska, B., M. Zimecki, and M. Mulczyk. 2000. Effective phage therapy is associated with normalization of cytokine production by blood cell cultures. Arch. Immunol. Ther. Exp. 48: 31-37
- Wills, Q. F., C. Kerrigan, and J. A. Soothill. 2005. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob. Agents Chemother. 49: 1220-1221 https://doi.org/10.1128/AAC.49.3.1220-1221.2005
Cited by
- Characterization of a T7-Like Lytic Bacteriophage of Klebsiella pneumoniae B5055: A Potential Therapeutic Agent vol.59, pp.3, 2009, https://doi.org/10.1007/s00284-009-9430-y
- Evidence to Support the Therapeutic Potential of Bacteriophage Kpn5 in Burn Wound Infection Caused by Klebsiella pneumoniae in BALB/c Mice vol.20, pp.5, 2009, https://doi.org/10.4014/jmb.0909.09010
- Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055 vol.60, pp.2, 2011, https://doi.org/10.1099/jmm.0.018580-0
- The Promise of Bacteriophage Therapy for Burkholderia cepacia Complex Respiratory Infections vol.1, pp.None, 2009, https://doi.org/10.3389/fcimb.2011.00027
- Isolation and characterisation of KP34—a novel φKMV-like bacteriophage for Klebsiella pneumoniae vol.90, pp.4, 2009, https://doi.org/10.1007/s00253-011-3149-y
- Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae vol.10, pp.1, 2009, https://doi.org/10.1186/1743-422x-10-100
- Phage cocktails and the future of phage therapy vol.8, pp.6, 2009, https://doi.org/10.2217/fmb.13.47
- Klebsiella Phage vB_KleM-RaK2 — A Giant Singleton Virus of the Family Myoviridae vol.8, pp.4, 2009, https://doi.org/10.1371/journal.pone.0060717
- Bacteriophage-aided intracellular killing of engulfed methicillin-resistant Staphylococcus aureus (MRSA) by murine macrophages vol.98, pp.10, 2014, https://doi.org/10.1007/s00253-014-5643-5
- Bacteriophage Therapy of a Vibrio parahaemolyticus Infection Caused by a Multiple-Antibiotic–Resistant O3:K6 Pandemic Clinical Strain vol.210, pp.1, 2014, https://doi.org/10.1093/infdis/jiu059
- Klebsiella pneumoniae subsp. pneumoniae –bacteriophage combination from the caecal effluent of a healthy woman vol.3, pp.None, 2009, https://doi.org/10.7717/peerj.1061
- Phospholipid structured microemulsion as effective carrier system with potential in methicillin sensitiveStaphylococcus aureus(MSSA) involved burn wound infection vol.23, pp.10, 2009, https://doi.org/10.3109/1061186x.2015.1048518
- Phage Therapy in the Era of Synthetic Biology vol.8, pp.10, 2009, https://doi.org/10.1101/cshperspect.a023879
- Treatment options for diabetic foot osteomyelitis vol.18, pp.8, 2017, https://doi.org/10.1080/14656566.2017.1316375
- Development of a High-Throughput ex-Vivo Burn Wound Model Using Porcine Skin, and Its Application to Evaluate New Approaches to Control Wound Infection vol.8, pp.None, 2009, https://doi.org/10.3389/fcimb.2018.00196
- Liposome Entrapment of Bacteriophages Improves Wound Healing in a Diabetic Mouse MRSA Infection vol.9, pp.None, 2009, https://doi.org/10.3389/fmicb.2018.00561
- Prevention of Dermal Abscess Formation Caused by Staphylococcus aureus Using Phage JD007 in Nude Mice vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.01553
- Kinetics of Targeted Phage Rescue in a Mouse Model of Systemic Escherichia coli K1 vol.2018, pp.None, 2009, https://doi.org/10.1155/2018/7569645
- Biological challenges of phage therapy and proposed solutions: a literature review vol.17, pp.12, 2009, https://doi.org/10.1080/14787210.2019.1694905
- Bacteriophages, a New Therapeutic Solution for Inhibiting Multidrug-Resistant Bacteria Causing Wound Infection: Lesson from Animal Models and Clinical Trials vol.14, pp.None, 2020, https://doi.org/10.2147/dddt.s251171
- Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses vol.69, pp.2, 2009, https://doi.org/10.1099/jmm.0.001141
- Bacteriophage Infections of Biofilms of Health Care-Associated Pathogens: Klebsiella pneumoniae vol.9, pp.1, 2020, https://doi.org/10.1128/ecosalplus.esp-0029-2019
- Isolation and Characterization of Two Bacteriophages and Their Preventive Effects against Pathogenic Vibrio coralliilyticus Causing Mortality of Pacific Oyster ( Crassostrea gigas ) Larvae vol.8, pp.6, 2009, https://doi.org/10.3390/microorganisms8060926
- Application of Phagotherapy in the Treatment of Burn Patients (Review) vol.12, pp.3, 2009, https://doi.org/10.17691/stm2020.12.3.12
- Use of bacteriophage vB_Pd_PDCC‐1 as biological control agent of Photobacterium damselae subsp. damselae during hatching of longfin yellowtail (Seriola rivoliana) eggs vol.129, pp.6, 2009, https://doi.org/10.1111/jam.14744
- Nanotechnology Based Approaches in Phage Therapy: Overcoming the Pharmacological Barriers vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.699054
- Prospects of Inhaled Phage Therapy for Combatting Pulmonary Infections vol.11, pp.None, 2021, https://doi.org/10.3389/fcimb.2021.758392
- Phages and their potential to modulate the microbiome and immunity vol.18, pp.4, 2009, https://doi.org/10.1038/s41423-020-00532-4
- A mouse air pouch model for evaluating the anti-bacterial efficacy of phage MR-5 in resolving skin and soft tissue infection induced by methicillin-resistant Staphylococcus aureus vol.66, pp.6, 2009, https://doi.org/10.1007/s12223-021-00895-9