DOI QR코드

DOI QR Code

Efficacy of Bacteriophage Treatment in Murine Burn Wound Infection Induced by Klebsiella pneumoniae

  • Published : 2009.06.30

Abstract

In the present study, the therapeutic potential of purified and well-characterized bacteriophages was evaluated in thermally injured mice infected with Klebsiella pneumoniae B5055. The efficacy of five Klebsiella phages (Kpn5, Kpn12, Kpn13, Kpn17, and Kpn22) was evaluated on the basis of survival rate, decrease in bacterial counts in different organs of phage-treated animals, and regeneration of skin cells as observed by histopathological examination of phage-treated skin. Toxicity studies performed with all the phages showed them to be non-toxic, as no signs of morbidity and mortality were observed in phage-treated mice. The results of the study indicate that a single dose of phages, intraperitoneally (i.p.) at an MOI of 1.0, resulted in significant decrease in mortality, and this dose was found to be sufficient to completely cure K. pneumoniae infection in the burn wound model. Maximum decrease in bacterial counts in different organs was observed at 72 h post infection. Histopathological examination of skin of phage-treated mice showed complete recovery of burn infection. Kpn5 phage was found to be highly effective among all the phages and equally effective when compared with a cocktail of all the phages. From these results, it can be concluded that phage therapy may have the potential to be used as stand-alone therapy for K. pneumoniae induced burn wound infection, especially in situations where multiple antibiotic-resistant organisms are encountered.

Keywords

References

  1. Adams, M. (ed.). 1959. Bacteriophages. Interscience Publishers, London, United Kingdom
  2. Benedict, L. R. N. and R. S. Flamiano. 2004. Use of bacteriophages as therapy for Escherichia coli-induced bacteremia in mouse models. Phil. J. Microbiol. Infect. Dis. 33: 47-51
  3. Biswas, B., S. Adhya, P. Washart, B. Paul, A. N. Trostel, B. Powell, R. Carlton, and C. R. Merril. 2002. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun. 70:204-210 https://doi.org/10.1128/IAI.70.1.204-210.2002
  4. Brans, T. A., R. P. Dutrieux, M. J. Hoekstra, R. W. Kreis, and J. S. du Pont 1994. Histopathological evaluation of scalds and contact burns in the pig model. Burns 20: 548-551
  5. Bruttin, A. and H. Brussow. 2005. Human volunteers receiving Escherichia coli phage T4 orally: A safety test of phage therapy. Antimicrob. Agents Chemother. 49: 2874-2878 https://doi.org/10.1128/AAC.49.7.2874-2878.2005
  6. Capparelli, R., I. Ventimiglia, S. Roperto, D. Fenizia, and D. Iannelli. 2006. Selection of an Escherichia coli O157:H7 bacteriophage for persistence in the circulatory system of mice infected experimentally. Clin. Microbiol. Infect. 12: 248-253 https://doi.org/10.1111/j.1469-0691.2005.01340.x
  7. Casewell, M. W. and I. Phillips. 1981. Aspects of the plasmid mediated antibiotic resistance and epidemiology of Klebsiella species. Am. J. Med. 70: 459-462 https://doi.org/10.1016/0002-9343(81)90788-9
  8. Cerveny, K. E., A. DePaola, D. H. Duckworth, and P. A. Gulig. 2002. Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice. Infect. Immun. 70: 6251-6262 https://doi.org/10.1128/IAI.70.11.6251-6262.2002
  9. Church, D., S. Elsayed, O. Reid, B. Winston, and R. Lindsay. 2006. Burn wound infections. Clin. Microbiol. Rev. 19: 403-434 https://doi.org/10.1128/CMR.19.2.403-434.2006
  10. Cryz, S. J. Jr., E. Furer, and R. Germanier. 1984. Experimental Klebsiella pneumoniae burn wound sepsis: Role of capsular polysaccharide. Infect. Immun. 43:440-441
  11. Dale, R. M., K. G. Schnell, and J. P. Wong. 2004. Therapeutic efficacy of 'Nubiotics' against burn wound infection by Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 48:2918-2923 https://doi.org/10.1128/AAC.48.8.2918-2923.2004
  12. Danelishvili, L., L. S. Young, and L. E. Bermudez. 2006. In vivo efficacy of phage therapy for Mycobacterium avium infection as delivered by a nonvirulent Mycobacterium. Microb. Drug Resist. 12: 1-6 https://doi.org/10.1089/mdr.2006.12.1
  13. Inal, J. M. 2003. Phage therapy: A reappraisal of bacteriophages as antibiotics. Arch. Immunol. Ther. Exp. (Warsaw) 51: 237-244
  14. Ioseliani, G. D., G. D. Meladze, N. S. Chkhetiia, M. G. Mebuke, and N. I. Kiknadze. 1980. Use of bacteriophage and antibiotics for prevention of acute postoperative empyema in chronic suppurative lung diseases. Grudn. Khir. 6: 63-67
  15. Kehinde, A. O., S. A. Ademola, A. O. Okesola, O. M. Oluwatosin, and R. Bakare. 2004. Pattern of bacterial pathogens in burn wound infections in Ibadan, Nigeria. Ann. Burns Fire Disast. 17: 12-15
  16. Levin, B. and J. J. Bull. 1996. Phage therapy revisited: The population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Am. Nat. 147: 881-898 https://doi.org/10.1086/285884
  17. Loc Carrillo, C. L., R. D. J. Atterbury, A. El-Shibiny, P. L. Connerton, E. Dillon, A. Scott, and I. F. Connerton. 2005. Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl. Environ. Microbiol. 71: 6554-6563 https://doi.org/10.1128/AEM.71.11.6554-6563.2005
  18. Lorch, A. 1999. Bacteriophages: An alternative to antibiotics? Biotech. Develop. Monitor 39: 14-17
  19. Matsuzaki, S., M. Yasuda, H. Nishikawa, M. Kuroda, T. Ujihara, T. Shuin, et al. 2003. Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage $\phi$ MR11. J. Infect. Dis. 187: 613-624 https://doi.org/10.1086/374001
  20. Matsuzaki, S., M. Rashel, J. Uchiyma, T. Ujihara, M. Kuroda, M. Ikeuchi, M. Fujieda, J. Wakiguchi, and S. Imai. 2005. Bacteriophage therapy: A revitalized therapy against bacterial infectious diseases. J. Infect. Chemother. 11: 211-219 https://doi.org/10.1007/s10156-005-0408-9
  21. McVay, C., S. M. Velasquez, and J. A. Fralick. 2007. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob. Agents Chemother. 51: 1934-1938 https://doi.org/10.1128/AAC.01028-06
  22. Merril, C. R., B. Biswas, R. Carlon, N. C. Jensen, G. J. Creed, S. Zullo, and S. Adhya. 1996. Long-circulating bacteriophage as antibacterial agents. Proc. Natl. Acad. Sci. U.S.A. 93: 3188-3192 https://doi.org/10.1073/pnas.93.8.3188
  23. Nasser, S., A. Mabrouk, and A. Maher. 2003. Colonization of burn wounds in Ain Shams University Burn Unit. Burns 29:229-233 https://doi.org/10.1016/S0305-4179(02)00285-1
  24. Ozumba, U. C. and B. C. Jiburum. 2000. Bacteriology of burn wounds in Enugu, Nigeria. Burns 26: 178-180 https://doi.org/10.1016/S0305-4179(99)00075-3
  25. Paissano, A. F., B. Spira, S. Cai, and A. C. Bombana. 2004. In vitro antimicrobial effects of bacteriophages on human dentin infected with Enterococcus faecalis ATCC 29212. Oral Microbiol. Immunol. 19: 327-330 https://doi.org/10.1111/j.1399-302x.2004.00166.x
  26. Rumbaugh, K. P., J. A. Griswold, B. H. Iglewski, and A. N. Hamood. 1999. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect. Immun. 67: 5854-5862
  27. Schembri, M. A., J. Blom, A. K. Krogfelt, and P. Klemm. 2005. Capsule and fimbria interaction in Klebsiella pneumoniae. Infect. Immun. 73: 4626-4633 https://doi.org/10.1128/IAI.73.8.4626-4633.2005
  28. Signori, M., S. Grappolini, E. Magliano, and L. Donati. 1992. Updated evaluation of the activity of antibiotics in a burn center. Burns 18: 500-503 https://doi.org/10.1016/0305-4179(92)90185-W
  29. Smith, H. W. and M. B. Huggins. 1982. Successful treatment of experimental Escherichia coli infections in mice using phages:Its general superiority over antibiotics. J. Gen. Microbiol. 128:307-318
  30. Stroj, L., B. Weber-Dabrowska, K. Partyka, M. Mulczyk, and M. Wojcik. 1999. Successful treatment with bacteriophage in purulent cerebrospinal meningitis in a newborn. Neurol. Neurochir. Pol. 3: 693-698
  31. Sulakvelidze, A., Z. Alavidze, and J. G. Morris Jr. 2001. Bacteriophage therapy. Antimicrob. Agents Chemother. 45:649-659 https://doi.org/10.1128/AAC.45.3.649-659.2001
  32. Theil, K. 2004. Old dogma, new tricks - 21st century phage therapy. Nat. Biotechnol. 22: 31-36 https://doi.org/10.1038/nbt0104-31
  33. Wang, J., B. Hu, M. Xu, Q. Yan, S. Liu, X. Zhu, ei al. 2006. Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. Int. J. Mol. Med. 17: 309-317
  34. Weber-Dabrowska, B., M. Zimecki, and M. Mulczyk. 2000. Effective phage therapy is associated with normalization of cytokine production by blood cell cultures. Arch. Immunol. Ther. Exp. 48: 31-37
  35. Wills, Q. F., C. Kerrigan, and J. A. Soothill. 2005. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob. Agents Chemother. 49: 1220-1221 https://doi.org/10.1128/AAC.49.3.1220-1221.2005

Cited by

  1. Characterization of a T7-Like Lytic Bacteriophage of Klebsiella pneumoniae B5055: A Potential Therapeutic Agent vol.59, pp.3, 2009, https://doi.org/10.1007/s00284-009-9430-y
  2. Evidence to Support the Therapeutic Potential of Bacteriophage Kpn5 in Burn Wound Infection Caused by Klebsiella pneumoniae in BALB/c Mice vol.20, pp.5, 2009, https://doi.org/10.4014/jmb.0909.09010
  3. Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055 vol.60, pp.2, 2011, https://doi.org/10.1099/jmm.0.018580-0
  4. The Promise of Bacteriophage Therapy for Burkholderia cepacia Complex Respiratory Infections vol.1, pp.None, 2009, https://doi.org/10.3389/fcimb.2011.00027
  5. Isolation and characterisation of KP34—a novel φKMV-like bacteriophage for Klebsiella pneumoniae vol.90, pp.4, 2009, https://doi.org/10.1007/s00253-011-3149-y
  6. Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae vol.10, pp.1, 2009, https://doi.org/10.1186/1743-422x-10-100
  7. Phage cocktails and the future of phage therapy vol.8, pp.6, 2009, https://doi.org/10.2217/fmb.13.47
  8. Klebsiella Phage vB_KleM-RaK2 — A Giant Singleton Virus of the Family Myoviridae vol.8, pp.4, 2009, https://doi.org/10.1371/journal.pone.0060717
  9. Bacteriophage-aided intracellular killing of engulfed methicillin-resistant Staphylococcus aureus (MRSA) by murine macrophages vol.98, pp.10, 2014, https://doi.org/10.1007/s00253-014-5643-5
  10. Bacteriophage Therapy of a Vibrio parahaemolyticus Infection Caused by a Multiple-Antibiotic–Resistant O3:K6 Pandemic Clinical Strain vol.210, pp.1, 2014, https://doi.org/10.1093/infdis/jiu059
  11. Klebsiella pneumoniae subsp. pneumoniae –bacteriophage combination from the caecal effluent of a healthy woman vol.3, pp.None, 2009, https://doi.org/10.7717/peerj.1061
  12. Phospholipid structured microemulsion as effective carrier system with potential in methicillin sensitiveStaphylococcus aureus(MSSA) involved burn wound infection vol.23, pp.10, 2009, https://doi.org/10.3109/1061186x.2015.1048518
  13. Phage Therapy in the Era of Synthetic Biology vol.8, pp.10, 2009, https://doi.org/10.1101/cshperspect.a023879
  14. Treatment options for diabetic foot osteomyelitis vol.18, pp.8, 2017, https://doi.org/10.1080/14656566.2017.1316375
  15. Development of a High-Throughput ex-Vivo Burn Wound Model Using Porcine Skin, and Its Application to Evaluate New Approaches to Control Wound Infection vol.8, pp.None, 2009, https://doi.org/10.3389/fcimb.2018.00196
  16. Liposome Entrapment of Bacteriophages Improves Wound Healing in a Diabetic Mouse MRSA Infection vol.9, pp.None, 2009, https://doi.org/10.3389/fmicb.2018.00561
  17. Prevention of Dermal Abscess Formation Caused by Staphylococcus aureus Using Phage JD007 in Nude Mice vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.01553
  18. Kinetics of Targeted Phage Rescue in a Mouse Model of Systemic Escherichia coli K1 vol.2018, pp.None, 2009, https://doi.org/10.1155/2018/7569645
  19. Biological challenges of phage therapy and proposed solutions: a literature review vol.17, pp.12, 2009, https://doi.org/10.1080/14787210.2019.1694905
  20. Bacteriophages, a New Therapeutic Solution for Inhibiting Multidrug-Resistant Bacteria Causing Wound Infection: Lesson from Animal Models and Clinical Trials vol.14, pp.None, 2020, https://doi.org/10.2147/dddt.s251171
  21. Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses vol.69, pp.2, 2009, https://doi.org/10.1099/jmm.0.001141
  22. Bacteriophage Infections of Biofilms of Health Care-Associated Pathogens: Klebsiella pneumoniae vol.9, pp.1, 2020, https://doi.org/10.1128/ecosalplus.esp-0029-2019
  23. Isolation and Characterization of Two Bacteriophages and Their Preventive Effects against Pathogenic Vibrio coralliilyticus Causing Mortality of Pacific Oyster ( Crassostrea gigas ) Larvae vol.8, pp.6, 2009, https://doi.org/10.3390/microorganisms8060926
  24. Application of Phagotherapy in the Treatment of Burn Patients (Review) vol.12, pp.3, 2009, https://doi.org/10.17691/stm2020.12.3.12
  25. Use of bacteriophage vB_Pd_PDCC‐1 as biological control agent of Photobacterium damselae subsp. damselae during hatching of longfin yellowtail (Seriola rivoliana) eggs vol.129, pp.6, 2009, https://doi.org/10.1111/jam.14744
  26. Nanotechnology Based Approaches in Phage Therapy: Overcoming the Pharmacological Barriers vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.699054
  27. Prospects of Inhaled Phage Therapy for Combatting Pulmonary Infections vol.11, pp.None, 2021, https://doi.org/10.3389/fcimb.2021.758392
  28. Phages and their potential to modulate the microbiome and immunity vol.18, pp.4, 2009, https://doi.org/10.1038/s41423-020-00532-4
  29. A mouse air pouch model for evaluating the anti-bacterial efficacy of phage MR-5 in resolving skin and soft tissue infection induced by methicillin-resistant Staphylococcus aureus vol.66, pp.6, 2009, https://doi.org/10.1007/s12223-021-00895-9