References
- Adya, A. K., E. Canetta, and G. M. Walker. 2005. Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe. FEMS Yeast Res. 6: 120-128 https://doi.org/10.1111/j.1567-1364.2005.00003.x
- Ahimou, F., A. Touhami, and Y. F. Dufrene. 2003. Real-time imaging of the surface topography of living yeast cells by atomic force microscopy. Yeast 20: 25-30 https://doi.org/10.1002/yea.923
- Belo, I., R. Pinheiro, and M. Mota. 2005. Morphological and physiological changes in Saccharomyces cerevisiae by oxidative stress from hyperbaric air. J. Biotechnol. 115: 397-404 https://doi.org/10.1016/j.jbiotec.2004.09.010
- Binning, G., C. F. Quate, and C. Gerber. 1986. Atomic force microscope. Phys. Rev. Lett. 56: 930-933 https://doi.org/10.1103/PhysRevLett.56.930
- Bolshakova, A. V., O. I. Kiselyova, and I. V. Yaminsky. 2004. Microbial surfaces investigated using atomic force microscopy. Biotechnol. Progr. 20: 1615-1622 https://doi.org/10.1021/bp049742c
- Cabiscol, E., E. Piulatas, P. Echaves, E. Herrero, and J. Ros. 2000. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem. 275: 27393-27398
- Cadenas, E. 1989. Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58: 79-110 https://doi.org/10.1146/annurev.bi.58.070189.000455
- Canetta, E. and A. K. Adya. 2005. Atomic force microscopy:Applications to nanobiotechnology. J. Indian Chem. Soc. 82:93-118
- Canetta, E., A. K. Adya, and G. M. Walker. 2006. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology. FEMS Microbiol. Lett. 255: 308-315 https://doi.org/10.1111/j.1574-6968.2005.00089.x
- Canetta, E., A. Duperray, A. Leyrat, and C. Verdier. 2005. Measuring cell viscoelastic properties using a force-spectrometer:Influence of protein-cytoplasm interactions. Biorheology 42:321-333
- Canetta E., G. M. Walker, and A. K. Adya. 2006. Correlating yeast cell stress physiology to changes in the cell surface morphology: Atomic force microscopic studies. Sci. World J. 6:777-780 https://doi.org/10.1100/tsw.2006.166
- Costa, V. and P. Moradas-Ferreira. 2001. Oxidative stress and signal transduction in Saccharomyces cerevisiae: Insights into ageing, apoptosis and diseases. Mol. Aspects Med. 22: 217-246 https://doi.org/10.1016/S0098-2997(01)00012-7
- Doktycz, M. J., C. J. Sullivan, P. R. Hoyt, D. A. Pelletier, and D. P. Allison. 2003. AFM imaging of bacteria in liquid media immobilised on gelatin coated mica surfaces. Ultramicroscopy 97: 209-216 https://doi.org/10.1016/S0304-3991(03)00045-7
- Dufrene, Y. F. 2002. Atomic force microscopy, a powerful tool in microbiology. J. Bacteriol. 184: 5205-5213 https://doi.org/10.1128/JB.184.19.5205-5213.2002
- Fotiadis, D., D. J. Muller, G. Tsiotis, L. Hasler, P. Tittmann, T. Mini, P. Jeno, H. Gross, and J. Engel. 1998. Surface analysis of the photosystem I complex by electron and atomic force microscopy. J. Mol. Biol. 283: 83-94 https://doi.org/10.1006/jmbi.1998.2097
- Fotiadis, D., S. Scheuring, S. A. Müller, A. Angel, and D. J. Muller. 2002. Imaging and manipulation of biological structures with the AFM. Micron 33:385-397 https://doi.org/10.1016/S0968-4328(01)00026-9
- Fritz, M., M. Radmacher, and H. E. Gaub. 1994. Granular motion and membrane spreading during activation of human platelets imaged by atomic force microscopy. Biophys. J. 66:1328-1334 https://doi.org/10.1016/S0006-3495(94)80963-4
- Gulshan, K., S. A. Rovinsky, and W. S. Moye-Rowley. 2004. YBP1 and its homologue YBP2/YBH1 influence oxidativestress tolerance by nonidentical mechanisms in Saccharomyces cerevisiae. Eukaryot. Cell 3: 318-330 https://doi.org/10.1128/EC.3.2.318-330.2004
- Halliwell, H. and J. M. C. Gutteridge. 1999. Free Radicals in Biology and Medicine, 3rd Ed. Oxford University Press, London, U.K
- Izawa, S., Y. Inoue, and A. Kimura. 1995. Oxidative stressresponse in yeast - Effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett. 368: 73-76 https://doi.org/10.1016/0014-5793(95)00603-7
- Jamieson, D. J. 1998. Oxidative stress response of the yeast Saccharomyces cerevisiae. Yeast 14: 1511-1527 https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
- Laun, P., A. Pichova, F. Madeo, J. Fuchs, A. Ellinger, S. Kohlwein, I. Dawes, K. Frohlich, and M. Breitenbach. 2001. Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol. Microbiol. 39: 1166-1173 https://doi.org/10.1111/j.1365-2958.2001.02317.x
- Madeo, F., E. Frohlich, M. Ligr, M. Grey, S. J. Sigrist, D. H. Wolf, and K. U. Frohlich. 1999. Oxygen stress: A regulator of apopstosis in yeast. J. Cell Biol. 139: 757-767
- Magnelli, P. E., J. F. Cipollo, and P. W. Robbins. 2005. A glucanase-driven fractionation allows redefinition of Schizosaccharomyces pombe cell wall composition and structure:Assignment of diglucan. Anal. Biochem. 336: 202-212 https://doi.org/10.1016/j.ab.2004.09.022
- Mendez-Vilas, A., J. Diaz, M. G. Donoso, A. M. Gallardo-Moreno, and M. Gonzalez-Martin. 2006. Ultrastructural and physico-chemical heterogeneities of yeast surfaces revealed by mapping lateral-friction and normal-adhesion forces using an atomic force microscope. Antonie van Leeuwenhoek 89: 495-509 https://doi.org/10.1007/s10482-005-9048-4
- Moradas-Ferreira, P., V. Costa, P. Piper, and W. Mager. 1996. The molecular defences against reactive oxygen species in yeasts. Molec. Microbiol. 19: 651-658 https://doi.org/10.1046/j.1365-2958.1996.403940.x
Cited by
- Use of atomic force microscopy (AFM) to explore cell wall properties and response to stress in the yeast Saccharomyces cerevisiae vol.59, pp.4, 2009, https://doi.org/10.1007/s00294-013-0411-0
- Exploring Three PIPs and Three TIPs of Grapevine for Transport of Water and Atypical Substrates through Heterologous Expression in aqy-null Yeast vol.9, pp.8, 2009, https://doi.org/10.1371/journal.pone.0102087
- Effects of photodynamic therapy on Enterococcus faecalis biofilms vol.30, pp.5, 2015, https://doi.org/10.1007/s10103-015-1749-y
- Atomic force microscopy visualization of injuries in Enterococcus faecalis surface caused by Er,Cr:YSGG and diode lasers vol.20, pp.1, 2015, https://doi.org/10.4317/medoral.19991
- Structural changes in the cell envelope of Yarrowia lipolytica yeast under stress conditions vol.64, pp.5, 2009, https://doi.org/10.1139/cjm-2018-0034
- Intracellular Mass Density Increase Is Accompanying but Not Sufficient for Stiffening and Growth Arrest of Yeast Cells vol.6, pp.None, 2009, https://doi.org/10.3389/fphy.2018.00131
- Cinnamomum zeylanicum bark essential oil induces cell wall remodelling and spindle defects in Candida albicans vol.5, pp.None, 2018, https://doi.org/10.1186/s40694-018-0046-5
- Insoluble solids at high concentrations repress yeast’s response against stress and increase intracellular ROS levels vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-48733-w
- Characterization of the nanomechanical properties of the fission yeast (Schizosaccharomyces pombe) cell surface by atomic force microscopy vol.38, pp.8, 2009, https://doi.org/10.1002/yea.3564