DOI QR코드

DOI QR Code

Nanoscopic Morphological Changes in Yeast Cell Surfaces Caused by Oxidative Stress: An Atomic Force Microscopic Study

  • Canetta, Elisabetta (Condensed Matter Group and BIONTHE (Bio- and Nano- Technologies for Health and Environment) Centre) ;
  • Walker, Graeme M. (Abertay Centre for Environment, School of Contemporary Sciences, University of Abertay Dundee) ;
  • Adya, Ashok K. (Condensed Matter Group and BIONTHE (Bio- and Nano- Technologies for Health and Environment) Centre)
  • Published : 2009.06.30

Abstract

Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schizo pombe.

Keywords

References

  1. Adya, A. K., E. Canetta, and G. M. Walker. 2005. Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe. FEMS Yeast Res. 6: 120-128 https://doi.org/10.1111/j.1567-1364.2005.00003.x
  2. Ahimou, F., A. Touhami, and Y. F. Dufrene. 2003. Real-time imaging of the surface topography of living yeast cells by atomic force microscopy. Yeast 20: 25-30 https://doi.org/10.1002/yea.923
  3. Belo, I., R. Pinheiro, and M. Mota. 2005. Morphological and physiological changes in Saccharomyces cerevisiae by oxidative stress from hyperbaric air. J. Biotechnol. 115: 397-404 https://doi.org/10.1016/j.jbiotec.2004.09.010
  4. Binning, G., C. F. Quate, and C. Gerber. 1986. Atomic force microscope. Phys. Rev. Lett. 56: 930-933 https://doi.org/10.1103/PhysRevLett.56.930
  5. Bolshakova, A. V., O. I. Kiselyova, and I. V. Yaminsky. 2004. Microbial surfaces investigated using atomic force microscopy. Biotechnol. Progr. 20: 1615-1622 https://doi.org/10.1021/bp049742c
  6. Cabiscol, E., E. Piulatas, P. Echaves, E. Herrero, and J. Ros. 2000. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem. 275: 27393-27398
  7. Cadenas, E. 1989. Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58: 79-110 https://doi.org/10.1146/annurev.bi.58.070189.000455
  8. Canetta, E. and A. K. Adya. 2005. Atomic force microscopy:Applications to nanobiotechnology. J. Indian Chem. Soc. 82:93-118
  9. Canetta, E., A. K. Adya, and G. M. Walker. 2006. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology. FEMS Microbiol. Lett. 255: 308-315 https://doi.org/10.1111/j.1574-6968.2005.00089.x
  10. Canetta, E., A. Duperray, A. Leyrat, and C. Verdier. 2005. Measuring cell viscoelastic properties using a force-spectrometer:Influence of protein-cytoplasm interactions. Biorheology 42:321-333
  11. Canetta E., G. M. Walker, and A. K. Adya. 2006. Correlating yeast cell stress physiology to changes in the cell surface morphology: Atomic force microscopic studies. Sci. World J. 6:777-780 https://doi.org/10.1100/tsw.2006.166
  12. Costa, V. and P. Moradas-Ferreira. 2001. Oxidative stress and signal transduction in Saccharomyces cerevisiae: Insights into ageing, apoptosis and diseases. Mol. Aspects Med. 22: 217-246 https://doi.org/10.1016/S0098-2997(01)00012-7
  13. Doktycz, M. J., C. J. Sullivan, P. R. Hoyt, D. A. Pelletier, and D. P. Allison. 2003. AFM imaging of bacteria in liquid media immobilised on gelatin coated mica surfaces. Ultramicroscopy 97: 209-216 https://doi.org/10.1016/S0304-3991(03)00045-7
  14. Dufrene, Y. F. 2002. Atomic force microscopy, a powerful tool in microbiology. J. Bacteriol. 184: 5205-5213 https://doi.org/10.1128/JB.184.19.5205-5213.2002
  15. Fotiadis, D., D. J. Muller, G. Tsiotis, L. Hasler, P. Tittmann, T. Mini, P. Jeno, H. Gross, and J. Engel. 1998. Surface analysis of the photosystem I complex by electron and atomic force microscopy. J. Mol. Biol. 283: 83-94 https://doi.org/10.1006/jmbi.1998.2097
  16. Fotiadis, D., S. Scheuring, S. A. Müller, A. Angel, and D. J. Muller. 2002. Imaging and manipulation of biological structures with the AFM. Micron 33:385-397 https://doi.org/10.1016/S0968-4328(01)00026-9
  17. Fritz, M., M. Radmacher, and H. E. Gaub. 1994. Granular motion and membrane spreading during activation of human platelets imaged by atomic force microscopy. Biophys. J. 66:1328-1334 https://doi.org/10.1016/S0006-3495(94)80963-4
  18. Gulshan, K., S. A. Rovinsky, and W. S. Moye-Rowley. 2004. YBP1 and its homologue YBP2/YBH1 influence oxidativestress tolerance by nonidentical mechanisms in Saccharomyces cerevisiae. Eukaryot. Cell 3: 318-330 https://doi.org/10.1128/EC.3.2.318-330.2004
  19. Halliwell, H. and J. M. C. Gutteridge. 1999. Free Radicals in Biology and Medicine, 3rd Ed. Oxford University Press, London, U.K
  20. Izawa, S., Y. Inoue, and A. Kimura. 1995. Oxidative stressresponse in yeast - Effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett. 368: 73-76 https://doi.org/10.1016/0014-5793(95)00603-7
  21. Jamieson, D. J. 1998. Oxidative stress response of the yeast Saccharomyces cerevisiae. Yeast 14: 1511-1527 https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
  22. Laun, P., A. Pichova, F. Madeo, J. Fuchs, A. Ellinger, S. Kohlwein, I. Dawes, K. Frohlich, and M. Breitenbach. 2001. Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol. Microbiol. 39: 1166-1173 https://doi.org/10.1111/j.1365-2958.2001.02317.x
  23. Madeo, F., E. Frohlich, M. Ligr, M. Grey, S. J. Sigrist, D. H. Wolf, and K. U. Frohlich. 1999. Oxygen stress: A regulator of apopstosis in yeast. J. Cell Biol. 139: 757-767
  24. Magnelli, P. E., J. F. Cipollo, and P. W. Robbins. 2005. A glucanase-driven fractionation allows redefinition of Schizosaccharomyces pombe cell wall composition and structure:Assignment of diglucan. Anal. Biochem. 336: 202-212 https://doi.org/10.1016/j.ab.2004.09.022
  25. Mendez-Vilas, A., J. Diaz, M. G. Donoso, A. M. Gallardo-Moreno, and M. Gonzalez-Martin. 2006. Ultrastructural and physico-chemical heterogeneities of yeast surfaces revealed by mapping lateral-friction and normal-adhesion forces using an atomic force microscope. Antonie van Leeuwenhoek 89: 495-509 https://doi.org/10.1007/s10482-005-9048-4
  26. Moradas-Ferreira, P., V. Costa, P. Piper, and W. Mager. 1996. The molecular defences against reactive oxygen species in yeasts. Molec. Microbiol. 19: 651-658 https://doi.org/10.1046/j.1365-2958.1996.403940.x

Cited by

  1. Use of atomic force microscopy (AFM) to explore cell wall properties and response to stress in the yeast Saccharomyces cerevisiae vol.59, pp.4, 2009, https://doi.org/10.1007/s00294-013-0411-0
  2. Exploring Three PIPs and Three TIPs of Grapevine for Transport of Water and Atypical Substrates through Heterologous Expression in aqy-null Yeast vol.9, pp.8, 2009, https://doi.org/10.1371/journal.pone.0102087
  3. Effects of photodynamic therapy on Enterococcus faecalis biofilms vol.30, pp.5, 2015, https://doi.org/10.1007/s10103-015-1749-y
  4. Atomic force microscopy visualization of injuries in Enterococcus faecalis surface caused by Er,Cr:YSGG and diode lasers vol.20, pp.1, 2015, https://doi.org/10.4317/medoral.19991
  5. Structural changes in the cell envelope of Yarrowia lipolytica yeast under stress conditions vol.64, pp.5, 2009, https://doi.org/10.1139/cjm-2018-0034
  6. Intracellular Mass Density Increase Is Accompanying but Not Sufficient for Stiffening and Growth Arrest of Yeast Cells vol.6, pp.None, 2009, https://doi.org/10.3389/fphy.2018.00131
  7. Cinnamomum zeylanicum bark essential oil induces cell wall remodelling and spindle defects in Candida albicans vol.5, pp.None, 2018, https://doi.org/10.1186/s40694-018-0046-5
  8. Insoluble solids at high concentrations repress yeast’s response against stress and increase intracellular ROS levels vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-48733-w
  9. Characterization of the nanomechanical properties of the fission yeast (Schizosaccharomyces pombe) cell surface by atomic force microscopy vol.38, pp.8, 2009, https://doi.org/10.1002/yea.3564