DOI QR코드

DOI QR Code

Ecotype-Dependent Genetic Regulation of Bolting Time in the Arabidopsis Mutants with Increased Number of Leaves

  • Published : 2009.06.30

Abstract

Leaves are the major biomass-producing organs in herbaceous plants and mainly develop during vegetative stage by activities of shoot apical meristem. There is a strong correlation between leaf number and bolting, a characteristic phenotype during the transition to reproductive phase in Arabidopsis thaliana. In order to study interactions between leaf number and bolting, we isolated a Landsberg erecta-derived mutant named multifolial (mfo1) that produces increased number of leaves and bolts at the same time as the wild type. Through positional cloning and allelism test, mfo1 was found to be an allele of a previously reported mutant, altered meristem program1-1 (amp1-1) that is defective in a glutamate carboxypeptidase and bolts earlier than its wild type, Columbia ecotype, with the increased number of leaves. The bolting time differences between mfo1 and amp1, despite the same phenotype of many leaves, suggest the existence of genetic factor(s) differently function in each ecotype in the presence of mfo1/amp1 mutation.

Keywords

References

  1. Baurle, I. and C. Dean. 2006. The timing of developmental transitions in plants. Cell 125: 655-664 https://doi.org/10.1016/j.cell.2006.05.005
  2. Chaudhury, A. M., S. Letham, S. Craig, and E. S. Dennis. 1993. amp1 - a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant J. 4: 907-916 https://doi.org/10.1046/j.1365-313X.1993.04060907.x
  3. Gazzani, S., A. R. Gendall, C. Lister, and C. Dean. 2003. Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol. 132: 1107-1114 https://doi.org/10.1104/pp.103.021212
  4. Giulini, A., J. Wang, and D. Jackson. 2004. Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430: 1031-1034 https://doi.org/10.1038/nature02778
  5. Helliwell, C. A., A. N. Chin-Atkins, I. W. Wilson, R. Chapple, E. S. Dennis, and A. Chaudhury. 2001. The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. Plant Cell 13: 2115-2125 https://doi.org/10.1105/tpc.13.9.2115
  6. Jander, G., S. R. Norris, S. D. Rounsley, D. F. Bush, I. M. Levin, and R. L. Last. 2002. Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129: 440-450 https://doi.org/10.1104/pp.003533
  7. Johanson, U., J. West, C. Lister, S. Michaels, R. Amasino and, C. Dean. 2000. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290: 344-347 https://doi.org/10.1126/science.290.5490.344
  8. Kang, M. J., J. K. Shim, M. S. Cho, Y. J. Seol, J. H. Hahn, D. J. Hwang, and D. S. Park. 2008. Specific detection of Xanthomonas oryzae pv. oryzicola in infected rice plant by use of PCR assay targeting a membrane fusion protein gene. J. Microbiol. Biotechnol. 18: 1492-1495
  9. Kawakatsu, T., J. Itoh, K. Miyoshi, N. Kurata, N. Alvarez, B. Veit, and Y. Nagato. 2006. PLASTOCHRON2 regulates leaf initiation and maturation in rice. Plant Cell 18: 612-625 https://doi.org/10.1105/tpc.105.037622
  10. Koornneef, M., C. Alonso-Blanco, A. J. M. Peeters, and W. Soppe. 1998. Genetic control of flowering time in arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 345-370 https://doi.org/10.1146/annurev.arplant.49.1.345
  11. Koornneef, M., C. J. Hanhart, and J. H. Vanderveen. 1991. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229: 57-66 https://doi.org/10.1007/BF00264213
  12. Le Corre, V., F. Roux, and X. Reboud. 2002. DNA polymorphism at the FRIGIDA gene in Arabidopsis thaliana: Extensive nonsynonymous variation is consistent with local selection for flowering time. Mol. Biol. Evol. 19: 1261-1271
  13. Lee, S. Y., Y. J. Choi, Y. M. Ha, and D. H. Lee. 2007. Ectopic expression of apple MbR7 gene induced enhanced resistance to transgenic Arabidopsis plant against a virulent pathogen. J. Microbiol. Biotechnol. 17: 130-137
  14. Miyoshi, K., B. O. Ahn, T. Kawakatsu, Y. Ito, J. I. Itoh, Y. Nagato, and N. Kurata. 2004. PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proc. Natl. Acad. Sci. U.S.A. 101: 875-880 https://doi.org/10.1073/pnas.2636936100
  15. Prigge, M. J. and D. R. Wagner. 2001. The Arabidopsis SERRATE gene encodes a zinc-finger protein required for normal shoot development. Plant Cell 13: 1263-1279 https://doi.org/10.1105/tpc.13.6.1263
  16. Reed, J. W., P. Nagpal, D. S. Poole, M. Furuya, and J. Chory. 1993. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throught Arabidopsis development. Plant Cell 5: 147-157 https://doi.org/10.1105/tpc.5.2.147
  17. Reinhardt, D., T. Mandel, and C. Kuhlemeier. 2000. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12: 507-518 https://doi.org/10.1105/tpc.12.4.507
  18. Reinhardt, D., E. R. Pesce, P. Stieger, T. Mandel, K. Baltensperger, M. Bennett, J. Traas, J. Friml, and C. Kuhlemeier. 2003. Regulation of phyllotaxis by polar auxin transport. Nature 426:255-260 https://doi.org/10.1038/nature02081
  19. Ryu, C. M., J. F. Murphy, M. S. Reddy, and J. W. Kloepper. 2007. A two-strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas syringae and Cucumber mosaic virus coupled to promotion of plant growth on Arabidopsis thaliana. J. Microbiol. Biotechnol. 17: 280-286
  20. Shindo, C., M. J. Aranzana, C. Lister, C. Baxter, C. Nicholls, M. Nordborg, and C. Dean. 2005. Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol. 138: 1163-1173 https://doi.org/10.1104/pp.105.061309
  21. Sticklen, M. B. 2008. Plant genetic engineering for biofuel production: Towards affordable cellulosic ethanol. Nat. Rev. Genet. 9: 433-443 https://doi.org/10.1038/nrg2336
  22. Veit, B., S. P. Briggs, R. J. Schmidt, M. F. Yanofsky, and S. Hake. 1998. Regulation of leaf initiation by the terminal ear 1 gene of maize. Nature 393: 166-168 https://doi.org/10.1038/30239
  23. Wang, J. W., R. Schwab, B. Czech, E. Mica, and D. Weigel. 2008. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20: 1231-1243 https://doi.org/10.1105/tpc.108.058180
  24. Wang, Y. H. and J. Y. Li. 2006. Genes controlling plant architecture. Curr. Opin. Biotechnol. 17: 123-129

Cited by

  1. Control of Plant Architecture: The Role of Phyllotaxy and Plastochron vol.52, pp.4, 2009, https://doi.org/10.1007/s12374-009-9034-x
  2. Youngia denticulata Protects Against Oxidative Damage Induced by tert-Butylhydroperoxide in HepG2 Cells vol.14, pp.10, 2009, https://doi.org/10.1089/jmf.2010.1557
  3. ALTERED MERISTEM PROGRAM 1 Is involved in Development of Seed Dormancy in Arabidopsis vol.6, pp.5, 2009, https://doi.org/10.1371/journal.pone.0020408
  4. Accession-Dependent CBF Gene Deletion by CRISPR/Cas System in Arabidopsis vol.8, pp.None, 2009, https://doi.org/10.3389/fpls.2017.01910