DOI QR코드

DOI QR Code

Impact Absorption Performance of Multi-layered Composite Structures based on Material-Structure Optimization

소재-구조 최적화 기반 다층-복합재료구조 충격흡수성능

  • 김병조 (한양대학교 자동차공학과 대학원) ;
  • 김태원 (한양대학교 기계공학부)
  • Published : 2009.06.30

Abstract

Total thickness, areal density and mass moment of inertia of materials are important material factors for structural characteristics. In this work, a material-structural optimization was performed up to the maximum ballistic limit of multi-layered composite structures under high impact velocity followed by the investigation of the influence of these factors on an impact absorption performance. A unified model combined with Florence's and Awerbuch-Bonder's models was used in optimizing the multi-layered composite structure consisting of CMC, rubber, aluminum and Al-foam. Total thickness, areal density and mass moment of inertia were used for the optimization constraint. As shown in the results, the ballistic limit determined from a newly developed unified model was closely similar to the finite clement analysis. Additionally, the ballistic limit and impact absorption energy obtained by the optimized structure were improved approximately 16.8% and 26.7%, respectively comparing with a not optimized multi-layered structure.

적층 두께, 면밀도, 질량관성모우멘트는 소재의 구조-역학적 특성을 나타내는 중요한 인자들이다. 본 연구에서는 이와 같은 인자들이 다층-복합재료구조의 내충격 성능에 미치는 영향을 고찰하기 위해 높은 충격자 속도 하에서 탄자한계속도기 최대가 되는 재료-구조 최적화를 수행하였다. 세라믹복합재료, 고무, 알루미늄 그리고 알루미늄 폼으로 구성된 다층-복합재료구조의 최적화를 위해 Florence 모델과 Awerbuch-Bonder 모델을 연계한 통합 모델을 개발하였으며, 구속 조건으로써 적층 두께, 면밀도, 질량관성모우멘트를 함께 사용하였다. 결과에서 알 수 있듯이, 제안된 통합 모델을 통해 계산된 탄자한계속도는 유한표소해석에서의 탄자한계속도와 거의 유사함을 확인하였다. 통합 모델을 바탕으로 재료-구조 최적화를 통해 설정된 다층구조는 최적화를 수행하지 않은 다층구조에 비해 약 10.8%의 탄자한계속도 및 26.7%의 충격흡수에너지 향상이 나타남을 알 수 있다.

Keywords

References

  1. 안성훈, 정우균, 김희재, "전투차량용 세라믹복합재료 복합장갑의 개발추세," 한국정밀공학회지, 제22권, 제7호, 2005, pp. 7-18
  2. "Military Specirication Armor," U. S. Patents, 1984, MiL-A-62473
  3. Gooch, W.A. and Burkins, M.S., "The Analysis of Threat Projectiles for Protection of Light Tactical Vehicle," U. S. Army Rearch Laboratory, 2004, ARL-RP-89
  4. Borvik, T., Hopperstad, O.S. and Langseth, M., "Effect of Tatget Thikness in Blunt Projetile Penetration of Weldox 460 E Steel Plate," Internationl Journal of Impact Engineering, Vol. 28, No. 4, 2003, pp. 413-464 https://doi.org/10.1016/S0734-743X(02)00072-6
  5. Hεtherington , J.G., "The Optimization of Two Component Composite Annours," lnternational Journal of lmpact Engineering, Vol. 12, No. 3, 1992, pp. 409-414 https://doi.org/10.1016/0734-743X(92)90145-J
  6. Wang, B. and Lu, G., "On thε Optimization of Twocomponent Plates against Ballistic Impact," Journal of Marterials Processing Technology, Vo1. 57, No. 1, 1996,pp. 141-145 https://doi.org/10.1016/0924-0136(95)02050-0
  7. Florence, A. L., "Intcfilction of projectile and coposite anmor, Part lI," Slanford Rearch Inslitute, Menlo Park(CA, USA) , 1969, AMMRG-CR-69-15
  8. Ben-Dor, G., Dubinsky, A. and Elperin, T., "OptimizatÍon of two-component composite armor against ballistic impact," Composite Sturctures, Vol. 69, No. 1, 2005, pp. 89-94 https://doi.org/10.1016/j.compstruct.2004.05.014
  9. Shi, J. and Grow, D., "Effect of doulble constraÍnts on the optimization of two-component armor systems," Composite Structures, Vol. 79, No. 3,2007, pp. 445-453 https://doi.org/10.1016/j.compstruct.2006.02.015
  10. Awerbuch, J. and Bonder, S.R., "Experimental Investigation of Nomal Perforation of Projectiles in Metallic Plates," International Journal of Solid Structures, Vol.10, 1974,pp. 685-699 https://doi.org/10.1016/0020-7683(74)90051-1
  11. Mahfuz, H., Zhu, Y. and Haque, A., "lnvestigation of high-velocity impact on integral arrmor usÍng fìnite element method," International Journal of Impact Engineering, Vol. 24, No. 2, 2000, pp. 203-217 https://doi.org/10.1016/S0734-743X(99)00047-0
  12. http://www.matweb.com/(AGY Holding Corp., Coors Ceramics Co., the Aluminum Association, lnc., Du Pont)
  13. Kim, Y, Gimm, H., Seo, M-Y and Kim, T.-W, "Determination of Shock Absorption Characteristics with Florencc Schemein Multi-Iayered Composite Structures," The 6th Asian Australasian Conference on Composite Mataials. 2008, pp. 267-270
  14. Lee, M. and Yoo, T.H., "Analysis of Ceramic/metal Armour Systems," Interenational Journal of Imact Engineering, Vol25, No. 9, 2001 , pp. 819-829 https://doi.org/10.1016/S0734-743X(01)00025-2
  15. Woodard, R L., Gooch, W.A. and O'Donnell, R.G. 'A Study of Fragmentation in the Ballistic Impact of Ceramics,' lnternational Journal of Impact Engineering, Vol. 15,No. 5, 1995, pp. 605-618 https://doi.org/10.1016/0734-743X(94)90122-2
  16. Fink, B. K., Monib, A.M. and Gillespie Jr., J.W.. "DamageTolerance of Thick-section Composites Subjected to Balistic Impact ," U.S. Army Research Laboratory 2001, ARL-TR-2477
  17. Gama, B.A .. Bogetti. T.A. and Fink B.A., "Aluminum Foam Integral Anmor: A New Dimension ín Armor Desing," Composite Structures, Vol. 52, No. 3/4, 2001, pp381-395 https://doi.org/10.1016/S0263-8223(01)00029-0
  18. Rosenberg, Z. and Dekel, E., "A numerical study of the cavIty expansion process and application to long-rod penetration mechics," International journal of lmpact Engineering, Vol. 35, 2008, pp. 147-154 https://doi.org/10.1016/j.ijimpeng.2007.01.005