Methylotrophic bacteria 접종이 작물 유묘 생장에 미치는 영향

Effect of Methylotrophic Bacteria in Seedling Development of Some Crops under Gnotobiotic Condition

  • 홍인수 (충북대학교 농업생명환경대학 농화학과) ;
  • 김준석 (충북대학교 농업생명환경대학 농화학과) ;
  • 이민경 (충북대학교 농업생명환경대학 농화학과) ;
  • 임우종 (충북대학교 농업생명환경대학 농화학과) ;
  • ;
  • ;
  • ;
  • 한광현 (충북대학교 농업생명환경대학 농화학과) ;
  • 사동민 (충북대학교 농업생명환경대학 농화학과)
  • Hong, In-Soo (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Jun-Seok (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Lee, Min-Kyoung (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Yim, Woo-Jong (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Islam, Md. Rashedul (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Boruah, Hari P. Deka (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Chauhan, Puneet Singh (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Han, Gwang-Hyun (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • 투고 : 2009.07.30
  • 심사 : 2009.08.12
  • 발행 : 2009.08.28

초록

농업유용미생물을 이용한 원예 및 채소작물의 건전 유묘 생산을 위하여 본 연구에서는 growth pouch 실험을 통하여 6가지 식물생육촉진 미생물을 접종하여 작물의 초기 뿌리 생장에 미치는 영향을 살펴 보았다. 본 실험에 사용한 6가지 균주는 Methylobacterium oryzae CBMB20, Methylobacterium phyllosphaerae CBMB27, Methylobacterium suomiense CBMB120, Methylobacterium strains CBMB12, CBMB15와 CBMB17이었다. 대조구와 비교했을 CBMB12, CBMB17, 및 CBMB20접종은 상추 초기 뿌리 생육에 유의성있는 효과를 보였고, CBMB102접종은 배추 초기 뿌리 생육에 유의성있는 효과를, CBMB27접종은 토마토의 초기 뿌리 생육에 유의성있는 효과를 보였다. 또한 Methylobacterium suomiense CBMB120접종은 오이, 토마토, 배추, 그리고 Methylobacterium strain CBMB12접종은 고추의 뿌리 초기 생장을 크게 촉진시켰음을 알 수 있었다. 위의 결과를 통하여 실험한 균주들을 각각의 작물 육묘 포트에 처리할 때에도 유묘의 생장속도를 촉진 시킬수 있음을 예상할 수 있다.

Healthy seedling generation is the major concern in overcoming adverse effects of biotic and abiotic stresses during tender stage of development in vegetables and horticultural crops. Because of this, priority is given to research leading to the generation of healthy seedlings in crops subjected to transplanting and bedding. In this study, growth pouch experiments were conducted to determine the effect of inoculation of six different strains of Methylobacterium sp. namely, M. oryzae CBMB20, M. phyllosphaerae CBMB27, M. suomiense CBMB120, and Methylobacterium strains CBMB12, CBMB15 and CBMB17 on the seedling development of the vegetable crops cabbage, Chinese cabbage and cucumber; and horticultural crops tomato and red pepper. Crops treated with the test strains generally showed higher seedling dry matter accumulation compared to the control. Significantly higher accumulation was exhibited by CBMB12, CBMB17, and CBMB20 in cabbage, as well as for CBMB27 and CBMB120 on tomato and Chinese cabbage, respectively. Furthermore, all the strains promoted root elongation in cucumber and tomato seedlings while in Chinese cabbage and red pepper, root elongation was observed with CBMB120 and CBMB12 inoculation, respectively. Large scale nursery study is needed to develop a thorough protocol for healthy seedling development with the use of these strains.

키워드

참고문헌

  1. Ail, B., A. N. sabri K. Ljung, and S. Hasnain. 2009. Quantification of indole 3 acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.) World J. Microbiol.Biotechnol. 25: 519-526 https://doi.org/10.1007/s11274-008-9918-9
  2. Astrid, V., M. Adriana, R. J. Manuel, B. J. Miguel and A. Rosario.2003. Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG induced drought stress. Mycorrhiza 13: 249-256 https://doi.org/10.1007/s00572-003-0223-z
  3. Baldani, V.L.D., J. I. Baldani and J. Dobereiner. 1987. Inoculation of field grown wheat (Triticum aestivum) with Azospirillum spp. in Brazil. Biol. Fertil. Soil 4:37-40
  4. Basile, D. V., M. R. Basile, Q. Y. Li and W. A. Corpe. 1985.Vitamin B12 stimulated growth and development of Jungermannia leiantha Grolle and Gymnocolea inflata (Huds.)Dum (Hepaticae). Bryologist 88:77-81 https://doi.org/10.2307/3242585
  5. Baskin, J. M. and C. C. Baskin. 1989. Physiology of dormancy and germination in relation to seed bank ecology; 53-66. In : M. A.Leach, V. T. Parker and R.L. Simpson (eds) Ecology of soil seed banks. Acad. Press, San Diego, California
  6. Christopher, L. M., E. L. Steckel, R. M. Hayes and T. C. Mueller.2006. Biotic and abiotic factors influence horseweed emergence.Weed Science 54:1101-1105 https://doi.org/10.1614/WS-06-026R1.1
  7. Deka Boruah, H.P., B. K. Rabha, N. Saikia and B. S. Dileep Kumar.2003. Fluorescent Pseudomonas influences palisade mesophyll development and spatial root development in Phaseolus vulgaris. Plant and Soil. 256: 291-301 https://doi.org/10.1023/A:1026197300684
  8. Glick, B.R., D.M. Penrose and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J. Theor. Biol. 190:63-68 https://doi.org/10.1006/jtbi.1997.0532
  9. Greenwood, D.J., J. M. T. Mckee, D. P. Fuller, I. G. Burns and B. J.Mulholland. 2007. A novel method of supplying nutrients permits predictable shoot growth and root:shoot ratios of pre transplant bedding plants. Annals Bot. 99:171-182 https://doi.org/10.1093/aob/mcl240
  10. Holland, M. A. and J. C. Polacco. 1992. Urease null and hydrogenase null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol 98:942-948 https://doi.org/10.1104/pp.98.3.942
  11. Holland, M. A. and J. C. Polacco. 1994. PPFMs and other covert contaminants: is there more to plant physiology than just plant? Ann. Rev Plant Physiol Plant Mol Biol 45:197-209 https://doi.org/10.1146/annurev.pp.45.060194.001213
  12. Kennedy, I. R., A. T. M. A. Choudhury, and L. K. Mihaly 2004.Non-symbiotic bacterial diazotrophs in crop-farming systems:cantheir potential for growth promotion be better exploited? Soil Biol. Biochem. 3:1229-1244
  13. Kloepper, J.W., J. Leong, M. Teintze, M.N. Schroth. 1980.Enhanced plant growth by siderophores produced by plant growthpromoting rhizobacteria. Nature 286:885-886 https://doi.org/10.1038/286885a0
  14. Koenig, R. L., R. O. Morris and J. C. Polacco. 2002. tRNA is the source of low level trans zeatin production in Methylobacterium spp. J Bacteriol 184, 1832-1842 https://doi.org/10.1128/JB.184.7.1832-1842.2002
  15. Koger, C. H., K. N. Reddy and D. H. Poston. 2004. Factors affecting seed germination, seedling emergence, and survival of texas weed (Caperonia palustris). Weed Science 52(6):989-995 https://doi.org/10.1614/WS-03-139R2
  16. Lee, H. S., Madhaiyan, M., C. W. Kim, S. J. Choi, K. Y. Chun and T. M. Sa 2006. Physiological enhancement of early growth of rice seedlings (Oryza sativa L.) by production of phytohormone of N2 - fixing methylotrophic isolates. Biol. Fer. Soils 42:402-408 https://doi.org/10.1007/s00374-006-0083-8
  17. Lidstrom, M. E. and Chistoserdova, L. 2002. Plants in the pink: cytokinin production by Methylobacterium. J Bacteriol 184, 1818 https://doi.org/10.1128/JB.184.7.1818.2002
  18. Ma, J. H., J. L. Yao, D. Cohen and B. Morris. 1998. Ethylene inhibitors enhance in vitro root formation from apple shoot cultures. Plant Cell Rep. 17:211-214 https://doi.org/10.1007/s002990050380
  19. Madhaiyan, M., S. Poonguzhali, K. Soon Woo and T. M. Sa. 2009. Methylobacterium phyllosphaerae sp. nov., a pink pigmented,facultative methylotrophs from the phyllosphere of rice. Int. J. of Syst. and Evo. Microbiol. 59:22-27 https://doi.org/10.1099/ijs.0.001693-0
  20. Madhaiyan, M., S. Poonguzhali, J. H. Ryu and T. M. Sa, 2006.Regulation of ethylene levels in canola (Brassica campestris) by 1 aminocyclopropane 1 carboxylate deaminase containing Methylobacterium fujisawaense. Planta 224:268-278 https://doi.org/10.1007/s00425-005-0211-y
  21. Madhaiyan, M., S. Poonguzhali, M. Senthilkumar, S. Seshadri, H. Y.Chung, S. Sundaram and T. M. Sa .2004. Growth promotion and induction of systemic resistance in rice cultivar Co 47 (Oryza sativa L.) by Methylobacterium sp. Bot. Bull. Acad. Sin. 45:315-324
  22. Madhaiyan, M., S. Poonguzhali, H. S. Lee, K. Hari, S. P. Sundaram and T. M. Sa. 2005. Pink pigmented facultative methylotrophic bacteria accelerate germination, growth and yield of sugarcane clone Co86032 (Saccharum officinarum L.). Biol. Fertil. Soils 41:350-358 https://doi.org/10.1007/s00374-005-0838-7
  23. Main, L.C., L.E. Steckel and R.M. Hayes. 2006. Biotic and abitic factors influence horseweed emergence. Weed Sci. 54:1101 1105 https://doi.org/10.1614/WS-06-026R1.1
  24. Orhan, A, A. Esitken, S. Ercisli, M. Turan and F. Sahin. 2006.Effects of plant growth promoting rhizobacteria (PGPR) on yield,growth and nutrient contents in organically growing raspberry.Scientia Horticulturae. 111:38-43 https://doi.org/10.1016/j.scienta.2006.09.002
  25. Ryu, J., M. Madhaiyan, S. Poonguzhali, W. Yim, P. Indiragandhi,K. Kim, A. Rangaswamy, Y. Jongchul, H. K. Kye and T. M. Sa 2006. Plant growth substances produced by Methylobacterium spp. And their effect on Tomato (Lycopersicon esculentum L.) and Red pepper (Capsicum annum L.) growth. J. Microbiol. Biotechnol. 16:1622-1628
  26. Poonguzhali, S., M. Madhaiyan and T.M. Sa. 2007. Production of acyl homoserine lactone quorum sensing signals is wide spread in gram negative Methylobacterium. J. Micobiol. Biotechnol. 17:226-233
  27. Poonguzhali, S., M. Madhaiyan, Y. Woo Jong, K. Kyonka A and T.M. Sa. 2008.Colonization pattern of plant root and leaf surfaces visualized by use of green fluorescent marked strain of Methylobacterium suomiense and its persistence in rhizosphere. Applied Microbial and Cell Physiol. 78:1033-1043 https://doi.org/10.1007/s00253-008-1398-1
  28. Scoggins, H. L., D. A. Bailey and P. V. Nelson. 2002. Efficacy of the press extraction method for bedding plant plug nutrient monitoring. Hort. Sci. 37:108-112
  29. Sonesson, L. K. 1994. Growth and survival after cotyledon removal in quercus rabur seedlings, grown in different natural soil types. Oikos. 69:65-70 https://doi.org/10.2307/3545284
  30. Stamps, R.H. 2000. Management of nutrients in ornamental plant production systems in Florida: an overview. Soil. Sci. and Crop. Sci. Soc. of Florida Proc. 59:27-31
  31. Suzanne, K. 1998. Effect of seed damage on germination in common vetch (Vicia sativa L.). The Am. Mid. Natural. 140:393-396 https://doi.org/10.1674/0003-0031(1998)140[0393:EOSDOG]2.0.CO;2
  32. Sy, A., E. Giraud, P. Jourand, N. Garcia, A. Willems, P. de Lajudie,Y. Prin, M. Neyra, M. Gillis and other authors. 2001.Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214-220 https://doi.org/10.1128/JB.183.1.214-220.2001
  33. Sy, A., A. C. J. Timmers, C. Knief and J. A. Vorholt. 2005.Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 71:7245-7252 https://doi.org/10.1128/AEM.71.11.7245-7252.2005
  34. Van Iersel, M. 1999. Fertilizer concentration affects growth and nutrient concentration of subirrigated pansies. Hort. Sci. 34:660-663
  35. Zandstra, J. W. and A. Liptay 1999. Nutritional effects on transplant root and shoot growth areview. Acta Hort. 504:23-31