시용 유기물을 달리한 토양에서 미생물 군락의 효소활성과 기능적 다양성의 계절적 변화

Seasonal Dynamics of Enzymetic Activities and Functional Diversity in Soils under Different Organic Managements

  • Park, Kee-Choon (Ginseng Research Division, Rural Development Administration) ;
  • Kremer, Robert J. (Agricultural Research Service, United States Department of Agriculture (USDA-ARS))
  • 투고 : 2009.05.15
  • 심사 : 2009.07.16
  • 발행 : 2009.08.28

초록

토양 개량을 위해 시용하는 유기물은 종류에 따라서 토양미생물 활성과 다양성에 미치는 영향을 다르며 그 효과는 계절적인 영향을 크게 받는다. 도시 가로수 폐기물 퇴비, 가금류 분뇨, 귀리와 레드 클로버의 피복작물이 토양 효소활성과 토양 미생물의 생리적 군락(CLPP) 특성에 미치는 영향을 미국 미주리 주의 사양토에서 조사하였다. 이들 토양 조사 항목들의 계절적 변화 패턴을 조사하기 위해서 2년간 봄부터 가을까지 토양을 매년 5회 채취하였다. 나무 폐기물 퇴비는 시용 3달 후부터 탈수소효소의 활성을 증가시키기 시작하였다. fluorescein diacetate (FDA) 수화도는 첫 해의 9월부터 증가하기 시작했으나 그 이후 변화가 심하였다. 탈수수효소의 활성은 FDA 소화도에 비하여 토양 유기물의 량이나 특성에 더 직접적으로 반응하였다. 반면에 FDA 수화도나 CLPP는 일반적으로 유기물의 구성 성분에 반응하였고, 효소활성과 CLPP 모두 계절에 따른 변화가 심하였다. 계절에 따른 변화는 유기물과 토양 수분함량의 차이에 기인한 것으로 보였다. 도시 가로수 폐기물 퇴비는 일반적인 토양 미생물 활성을 증가시키는데 효과적이었고 녹비는 토양 미생물 군락의 다양성을 변화시키는데 효과적이었다. 그리고 토양 미생물 활성과 다양성은 계절적 변화가 심하고 그 정도는 시용하는 유기물의 종류에 따라서 차이가 있으므로 토양의 미생물 특성을 조사할 때에는 작물의 재배기간 동안 여러 번 실시할 필요가 있다.

Soil microbial activity and diversity are affected by organic sources applied to improve soil quality and fluctuate seasonally. We investigated the effects of municipal compost (MC), poultry litter (PL), and cover crops of spring oats and red clover (RC) on soil enzyme activities, and soil bacterial community-level physiological profiling (CLPP) in a Mexico silt loam in North Central Missouri, USA. Temporal patterns of these parameters were observed by periodic five soil sampling from spring to fall over a two year period. MC increased soil dehydrogenase (DH) activity consistently beginning about three months after MC application; fluorescein diacetate (FDA) hydrolytic activity significantly began to increase by the September of the first year but fluctuated during the following period. DH activity responded more directly to the amount or properties of organic residues in soils while FDA hydrolysis and CLPP were generally influenced by composition of organic sources, and enzyme activities and CLPP showed seasonal variation, which depended on organic sources and soil moisture. MC and cover crops may be useful organic sources for enhancing general soil microbial activity and altering soil microbial diversity, respectively. Because microbial activities and diversity are dynamic and subject to seasonal changes, the effects of organic amendments on these parameters should be investigated frequently during a growing season.

키워드

참고문헌

  1. Adam, G., and H. Duncan.2001. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol.Biochem. 33:943-951 https://doi.org/10.1016/S0038-0717(00)00244-3
  2. Aseri G.K., and J.C. Tarafdar. Fluorescein diacetate: A potential biological indicator for arid soils. Arid Land Res. Manag. 20:87-99 https://doi.org/10.1080/15324980500544473
  3. Bandick, A.K., and R.P. Dick. 1999. Field management effects on soil enzyme activities. Soil Biol. Biochem. 31:1471-1479 https://doi.org/10.1016/S0038-0717(99)00051-6
  4. Bardgett, R.D., and R. Cook.1998. Functional aspects of soil animal diversity in agricultural grasslands. Appl. Soil Ecol. 10:263-276 https://doi.org/10.1016/S0929-1393(98)00125-5
  5. Bardgett, R.D., J.L. Mawdsley, S. Edwards, P.J. Hobbs, J.S.Rodwell, and W.J. Davies.1999. Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct.Ecol. 13:650-660 https://doi.org/10.1046/j.1365-2435.1999.00362.x
  6. Baudoin, E., E. Benizri, and A. Guckert. 2003. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol. Biochem. 35:1183-1192 https://doi.org/10.1016/S0038-0717(03)00179-2
  7. Berg, B., and C. McClaugherty. 2003. Plant Litter Decomposition,Humus Formation, Carbon Sequestration. p. 31-48. Springer-Verlag, Berlin, Germany
  8. Berg, G., N. Roskot, A. Steidle, L. Eberl, A. Zock, and K.Smalla.2002. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants, Appl. Environ. Microbiol. 68:3328-3338 https://doi.org/10.1128/AEM.68.7.3328-3338.2002
  9. Bossio, D.A., and K.M. Scow. 1995. Impact of carbon and flooding on the metabolic diversity of microbial communities in soils. Appl.Environ. Microbiol. 61:4043-4050
  10. Brown, J.R. 1998. Recommended chemical soil test procedures for the north central region, North central regional research publication No.221 (Revised). Missouri Agricultural Experiment Station, Columbia, MO, USA
  11. Bruns, C., S. Ahlers, A. Gattinger, C. Schüler, H. Vogtmann, and G.Wolf. 1996. The suppressive effects of composted separately collected organic waste and yard waste compost on two important soilborne plant pathogens, In: Bertoldi, M.D., P. Sequi, B.Lemmes, and T. Papi (eds) The science of composting, pp 1094-1095. Chapman & Hall, London, UK.
  12. Buyer, J.S., and L.E. Drinkwater. 1997. Comparison of substrate utilization assay and fatty acid analysis of soil microbial communities. J. Microbiol. Methods 30:3-11 https://doi.org/10.1016/S0167-7012(97)00038-9
  13. Chakrabarti, K. and P.Bhattacharyya. 2006. Influence of soil properties on fluorescein diacetate hydrolyzing activity under different agro-ecosystems. Arch. Agron. Soil Sci. 52:461-467 https://doi.org/10.1080/03650340600612607
  14. Donnison, L.M., G.S. Griffith, J. Hedger, P.J. Hobbs, and R.D.Bardgett. 2000. Management influences on soil microbial communities and their function in botanically diverse haymeadows of northern England and Wales.Soil Biol. Biochem. 32:253-263 https://doi.org/10.1016/S0038-0717(99)00159-5
  15. Fauci, M.F., and R.P. Dick. 1994. Soil microbial dynamics: Shortand long-term effects of inorganic and organic nitrogen. Soil Sci.Soc. Am. J. 58:801-806 https://doi.org/10.2136/sssaj1994.03615995005800030023x
  16. Frankenberger, W.T., Jr., and W.A. Dick. 1983. Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Sci. Soc. Am. J. 47, 945-951 https://doi.org/10.2136/sssaj1983.03615995004700050021x
  17. García-Gil, J.C., C. Plaza, P. Soler-Rovira, and A. Polo.2000. Longterm effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem.32:1907-1913 https://doi.org/10.1016/S0038-0717(00)00165-6
  18. Gaspar, M.L., M.N. Cabello, R. Pollero, and M.A. Aon. 2001.Fluorescein diacetate hydrolysis as a measure of fungal biomass in soil. Curr. Microbiol. 42:339-344 https://doi.org/10.1007/s002840010226
  19. Glimm, E., H. Heuer, B. Engelen, K. Smalla, and H. Backhaus.1997. Statistical comparisons of community catabolic profiles. J.Microbiol. Methods 30:71-80 https://doi.org/10.1016/S0167-7012(97)00046-8
  20. Graham M.H., and R.J. Haynes. 2005. Organic matter accumulation and fertilizer-induced acidification interact to affect soil microbial and enzyme activity on a long-term sugarcane management experiment. Biol. Fert. Soils 41: 249-256 https://doi.org/10.1007/s00374-005-0830-2
  21. Grayston, S.J., C.D. Campbell, R.D. Bardgett, J.L. Mawdsley, C.D. Clegg, K. Ritz, B.S. Griffiths, J.S. Rodwell, S.J. Edwards, W.J.Davies, D.J. Elston, and P. Millard. 2004. Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl. Soil Ecol. 25:63-84 https://doi.org/10.1016/S0929-1393(03)00098-2
  22. Grayston, S.J., G.S. Griffith, J.L. Mawdsley, C.D. Campbell, and R.D. Bardgett. 2001. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol.Biochem. 33:533-551 https://doi.org/10.1016/S0038-0717(00)00194-2
  23. Grayston, S.J., S. Wang, C.D. Campbell, and A.C. Edwards. 1998. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 30:369-378 https://doi.org/10.1016/S0038-0717(97)00124-7
  24. Groffman, P.M., P. Eagan, W.M. Sullivan, and J.L.Lemunyon.1996. Grass species and soil type effects on microbial biomass and activity. Plant Soil 183:61-67 https://doi.org/10.1007/BF02185565
  25. Haack, S.K., H. Garchow, M.J. Klug, and L.J. Forney. 1995.Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Appl. Environ. Microbiol. 61:1458-1468
  26. Hoitink, H.A.J., and M.J. Boehm. 1999. Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu. Rev. Phytopathol. 37:427-446 https://doi.org/10.1146/annurev.phyto.37.1.427
  27. Kayang, H., 2001. Fungal and bacterial enzyme activities in Alnus nepalensis D. Don. Eur. J. Soil Biol. 37:175-180 https://doi.org/10.1016/S1164-5563(01)01082-2
  28. Ladd J.N. 1978. Origin and range of enzymes in soil. p. 51-96. In R.G. Burns (ed). Soil enzymes. Academic Press, New York, USA
  29. Lalande, R., B. Gagnon, R.R. Simard, and D. C$\hat{o}$t$\acute{e}$. 2000. Soil microbial biomass and enzyme activity following liquid hog manure application in a long-term field trial. Can. J. Soil Sci.80:263-269 https://doi.org/10.4141/S99-064
  30. L$\ddot{a}$uter, J., 1996. Exact t and F tests for analyzing studies with multiple endpoints. Biometrics 52:964-970 https://doi.org/10.2307/2533057
  31. Liljeroth, E., E. B$\aa$$\aa$th, I. Mathiasson, and T. Lundborg. 1990. Root exudation and rhizoplane bacterial abundance of barley (Hordeum vulgare L.) in relation to nitrogen fixation and root growth. Plant Soil 127:81-89 https://doi.org/10.1007/BF00010839
  32. Martens, D.A., J.B. Johanson, and W.T. Frankenberger, Jr. 1992.Production and persistence of soil enzymes with repeated additions of organic residues. Soil Sci. 153:53-61 https://doi.org/10.1097/00010694-199201000-00008
  33. Mendes, I.C., A.K. Bandick, and R.P. Dick. Bottomley, P.J., 1999. Microbial biomass and activities in soil aggregates affected by winter cover crops. Soil Sci. Soc. Am. J. 63:873-881 https://doi.org/10.2136/sssaj1999.634873x
  34. Parham, J.A., S.P.Deng, W.R. Raun, and G.V. Johnson.2002. Longterm cattle manure application in soil: I. Effect on soil phosphorus levels, microbial biomass C, and dehydrogenase and phosphatase activities. Biol. Fert. Soils 35:328-337 https://doi.org/10.1007/s00374-002-0476-2
  35. Pascual, J.A., C. Garcia, T. Hernandez, J.L. Moreno, and M.Ros.2000. Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biol. Biochem. 32:1877-1883 https://doi.org/10.1016/S0038-0717(00)00161-9
  36. P$\acute{e}$rez-Piqueres, A, V. Edel-Hermann, C. Alabouvette, and C.Steinberg. 2006. Response of soil microbialcommunities to compost amendments. Soil Biol. Biochem. 38:460-470 https://doi.org/10.1016/j.soilbio.2005.05.025
  37. Persson, T., E. Baath, M. Clarholm, H. Lundkvist, B.E. Soderstrom,and B.Sohlenius. 1980. Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a Scots pine forest. Ecol.Bull. 32:419-4
  38. Rastin, N., K. Rosenplänter, and A Hüttermann.1988. Seasonal variation of enzyme activity and their dependence on certain soil factors in a beech forest soil. Soil Biol. Biochem. 20:637-642 https://doi.org/10.1016/0038-0717(88)90147-2
  39. Rogers, B.F., and R.L. Tate.2001. Temporal analysis of the soil microbial community along a toposequence in Pineland soils. Soil Biol. Biochem. 33:1389-1401 https://doi.org/10.1016/S0038-0717(01)00044-X
  40. SAS Institute. 2001. SAS/STAT User Guide. Version 8.2 SAS Inst.,Cary, NC
  41. Schnürer, J., M. Clarholm, and T. Rosswall. 1985. Microbial biomass and activity in an agricultural soil with different organic matter contents. Soil Biol. Biochem. 17:611-618 https://doi.org/10.1016/0038-0717(85)90036-7
  42. Shi W, E. Dell, D. Bowman, and K. Iyyemperumal. 2006. Soil enzyme activities and organic matter composition in a turfgrass chronosequence. Plant Soil 288:285-296 https://doi.org/10.1007/s11104-006-9116-1
  43. Smalla, K.,G. Wieland, A. Buchner,A. Zock,J. Parzy,S. Kaiser, N.Roskot, H. Heuer, and G. Berg. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: Plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67:4742-4751 https://doi.org/10.1128/AEM.67.10.4742-4751.2001
  44. Spedding, T.A., C. Hamel, G.R. Mehuys, and C.A.Madramootoo.2004. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol. Biochem. 36:499-512 https://doi.org/10.1016/j.soilbio.2003.10.026
  45. Waldrop, M.P., T.C. Balser, and M.K. Firestone.2000. Linking microbial community composition to function in a tropical soil. Soil Biol. Biochem. 32:1837-1846 https://doi.org/10.1016/S0038-0717(00)00157-7
  46. Wardle, D.A., G.M. Barker, K.I. Bonner, and K.S. Nicholson. 1998. Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems?. J. Ecol. 86:405-4 https://doi.org/10.1046/j.1365-2745.1998.00268.x
  47. Zak, D.R., D. Tilman, R.R. Parmenter, C.W. Rice, F.M. Fisher, J.Vose, D. Milchunas, and C.W. Martin. 1994. Plant production and soil microorganisms in late-successional exosystems: a continental scale study. Ecology 75:2333-2347 https://doi.org/10.2307/1940888
  48. Zvyagintsev, D. G. 1994. Vertical distribution of microbial communities in soils. P. 29-37. K. Ritz, et al. (ed.) Beyond the Biomass:Compositional and Functional Analysis of Soil Microbial Communities. John Wiley & Sons, Inc. NY, USA