화학비료와 유기질비료의 시용수준 및 Methylobacterium suomiense CBMB120의 처리가 고추 생육에 미치는 영향

Inoculation Effect of Methylobacterium suomiense on Growth of Red Pepper under Different Levels of Organic and Chemical Fertilizers

  • Lee, Min-Kyoung (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Lee, Gil-Seung (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Yim, Woo-Jong (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Hong, In-Soo (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Palaniappan, Pitchai (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Siddikee, Md. Ashaduzzaman (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Boruah, Hari P. Deka (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Madhaiyan, Munusamy (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Ahn, Ki-Sup (Department of Health and Environment, Baekseok culture University) ;
  • Sa, Tongmin (Department of Agricultural Chemistry, Chungbuk National University)
  • 투고 : 2009.05.07
  • 심사 : 2009.07.22
  • 발행 : 2009.08.28

초록

화학비료와 유기질비료를 시비 수준 및 Methylobacterium suomiense CBMB120의 접종이 고추 생육에 미치는 영향을 확인하기 위하여 유기질비료와 화학비료의 시비량을 권장시용수준의 100%, 75% 및 50%로 처리하고 Methylobacterium suomiense CBMB120을 접종 한 후 정식 후 19, 36, 및 166일에 작물의 높이를 측정하였으며 이식 후 166일에 건물량 측정하였다. 균주를 접종한 처리구의 식물체 높이는 정식 후 19, 36일에 각각 14.17%, 10.03% 증가하였다. 건물 중 역시 10.30%, 6.84% 증가하여 유의성 있는 차이를 나타내었다. 또한 균주 접종은 유기질 비료 100% 시용구는 36일 후 고도의 유의성(p<0.01)을 갖는 차이를 보였으며 화학 비료 100% 시용구는 19일 후 고도의 유의성(p<0.01)을 갖는 차이를 나타내었다. 화학비료 100% 시용구에 균주를 접종하지 않은 처리 구와 화학비료 75% 시용구에 균주를 접종한 처리구의 생육을 분석한 결과 유의성 있는 차이가 없는 것으로 나타났다. 이는 향후 다양한 처리량 및 처리방법의 연구를 통하여 Methylobacterium suomiense CBMB120 균주의 접종이 화학비료를 일정 부분 감비 할 수 있다는 가능성을 시사한다.

Use of plant growth promoting symbiotic and non-symbiotic free-living beneficial bacteria as external source of nitrogen is a major research concern for sustainable crop production in the $21^{st}$ century. In view of this, an experiment was conducted under controlled conditions to determine the effects of inoculation with Methylobacterium suomiense CBMB120, a plant growth promoting (PGP) root and shoot colonizer on red pepper, for the purpose of reducing external chemical nitrogen fertilization. Amendments with organic fertilizer and chemical fertilizer in the form of NPK were made at dosages of 50%, 75% and 100%, at 425 and $115kg/ha^{-1}$ measurements. The soil type used was loam, with a pH of 5.13. The growth responses were measured as plant height at 19, 36 and 166 days after transplantation and final biomass production after 166 days. It was found that inoculation with M. suomiense CBMB120 promotes plant height increase during the active growth phase at 19 and 36 days by 14.17% and 10.03%, respectively. Thereafter, the bacteria inoculated plantlets showed canopy size increment. A highly significant inoculation effect on plant height at p<0.01 level was found for 100% level of organic matter and chemical amendment in red pepper plantlets after 36 days and 19 days from transplantation. Furthermore, there was a significantly higher (10.30% and 6.84%) dry biomass accumulation in M. suomiense CBMB120 inoculated plants compared to un-inoculated ones. A 25% reduction in the application of chemical nitrogen can be inferred with inoculation of M. suomiense CBMB120 at with comparable results to that of 100% chemical fertilization alone. Enumeration of total bacteria in rhizosphere soil confirms that the introduced bacteria can multiply along ther hizosphere soil. Large scale field study may lead to the development of M. suomiense CBMB120 as an efficient biofertilizer.

키워드

참고문헌

  1. Anuar, A. R., Z. H. Shamsuddin and O. Yaacob. 1995. Contributionof legume-N by nodulated groundnut for growth of maize on an acid soil. Soil Biol. Biochem. 27:595 601 https://doi.org/10.1016/0038-0717(95)98637-4
  2. Balemi, T. 2008. Response of tomato cultivars differing in growth habit to nitrogen and phosphorus fertilizers and spacing on vertisolin Ethiopia.ActaAgric. Slovenica. 91:103-119 https://doi.org/10.2478/v10014-008-0011-8
  3. Bhattacharjee, B. R., A. Singh and S. N. Mukhopadhyay. 2008. Use of nitrogen-fixing bacteria as biofertiliser for non-legumes:prospects and challenges. Appl. Microbiol. Biotechnol. 80:199-209 https://doi.org/10.1007/s00253-008-1567-2
  4. Bhuiyan, N. I. 1995. Intensive cropping and soil nutrient balance in Bangladesh.p.61 71. In M. S. Hussain, S. M. I. Huq, M. A. Iqbal and T. H. Khan (ed.) Improving soil management for intensive cropping in the tropics and sub-tropics. Bangladesh Agricultural Research Council, Dhaka
  5. Bijay-Singh, Yadvinder-Singh and G. S. Sekhon. 1995. Fertilizer-N use efficiency and nitrate pollution of groundwater in developing countries. J. Contam. Hydrol. 20:167 184 https://doi.org/10.1016/0169-7722(95)00067-4
  6. Choudhury, A. T. M. A. and Y. M. Khanif. 2001. Evaluation of the effects of nitrogen and magnesium fertilization on rice yield and fertilizer nitrogen efficiency using 15Ntracertechnique.J. Plant Nutr. 24: 855 871 https://doi.org/10.1081/PLN-100103778
  7. Corpe, W. A. and S. Rheem. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol. Ecol. 62:243-250 https://doi.org/10.1111/j.1574-6968.1989.tb03698.x
  8. De Datta, S. K. and R. J. Buresh. 1989. Integrated nitrogen management in irrigated rice. Adv. Soil Sci. 10:143 169
  9. D$\ddot{o}$bereiner, J. and F. O. Pedrosa. 1987. Nitrogen-fixing bacteria in non leguminous crop plants. Science Tech, Madison
  10. Garabet, S., J. Ryan and M. Wood. 1998. Nitrogen and water effectson wheat yield in a Mediterranean-type climate. II. Fertilizer-use efficiency with labeled nitrogen. Field Crops Res. 58:213 221 https://doi.org/10.1016/S0378-4290(98)00096-3
  11. Halvorson, A. D., R. F. Follett, M. E. Bartolo and F. C. Schweissing. 2002. Nitrogen fertilizer use efficiency of furrow-irrigated onion and corn. Agron. J. 94:442 449 https://doi.org/10.2134/agronj2002.0442
  12. Holland, M. A. and J. C. Polacco. 1992. Urease-null and hydrogenase-null phenotypes of phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol. 98:942-948 https://doi.org/10.1104/pp.98.3.942
  13. Indiragandhi, P, R. Anandham, K. A. Kim, W. J. Yim, M. Madhaiyan and T. M. Sa. 2008. Induction of defense responses in tomato against Pseudomonas syringae pv. tomato by regulating the stress ethylene level with Methylobacterium oryzae CBMB20containing 1-aminocyclopropane-1-carboxylate deaminase. World J. Microbiol. Biotechnol. 24:1037-1045 https://doi.org/10.1007/s11274-007-9572-7
  14. Idris, R., M. Kuffner, M. Puschenreiter, S. Monchy, W. W. Wenzel and A. Sessitsch. 2006. Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlapsi goesingense and description of Methylobacterium goesingense sp. Nov. Syst. Appl. Microbiol. 29:634-644 https://doi.org/10.1016/j.syapm.2006.01.011
  15. Islam, N. and L. C. Bora. 1998. Biological management of bacterial leaf blight of rice (Oryza sativa) with plant growth promoting rhizobacteria. Ind. J. Agric. Sci. 68:798-800
  16. Jeyabal, A. and G. Kuppuswamy. 2001. Recycling of organic wastes for the production of vermicompost and its response in ricelegume cropping system and soil fertility. Eur. J. Agron. 15:153-170 https://doi.org/10.1016/S1161-0301(00)00100-3
  17. Kannaiyan, S., K. Govindarajan and H. D. Lewin. 1980. Effect of foliar spray of Azotobacter chroococcum on rice crop. Plant Soil 56:487-490 https://doi.org/10.1007/BF02143042
  18. Kennedy, I. R., A. T. M. A. Choudhury and M. L. Kecskes. 2004.Non-symbiotic bacterial diazotrophs in crop-farming systems: Can their potential for plant growth promotion be better exploited? Soil Biol. Biochem. 36:1229-1244 https://doi.org/10.1016/j.soilbio.2004.04.006
  19. Madhaiyan, M., S. Poonguzhali, J. Ryu, and T. M. Sa. 2006.Regulation of ethylene levels in canola (Brassica campestris) by 1aminocyclopropane-1-carboxylatedeaminase-containing Methylobacterium fujisawaense. Planta 224:268-278 https://doi.org/10.1007/s00425-005-0211-y
  20. Nguyen, T. H., R. Deaker, I. R. Kennedy and R. J. Roughley. 2003.The positive yield response of field-grown rice to inoculation with a multi-strain biofertiliser in the Hanoiarea,Vietnam.Symbiosis 35:231-245
  21. Ponnamperuma, F. N. and P. Deturck. 1993. A review of fertilization in rice production. Int. Rice Commission Newsletter 42:1-12
  22. Poonguzhali S., M. Madhaiyan, W. J. Yim, K. A. Kim and T. M. Sa.2008. Colonization pattern of plant root and leaf surfaces visualized by use of green-fluorescent-marked strain of Methylobacterium suomiense and its persistence inrhizosphere.Appl. Microbiol. Biotechnol. 78:1033-1043 https://doi.org/10.1007/s00253-008-1398-1
  23. Poonguzhali S, M. Madhaiyan and T. M. Sa. 2007. Production of Acyl-homoserine lactone quorum-sensing signals is wide spread in Gram-negative Methylobacterium. J. Microbiol. Biotechnol.17:226-233
  24. Ryu, J., M. Madhaiyan, S. Poonguzhali, W. J. Yim, P. Indiragandhi,K. A. Kim, R. Anandham, J. Yun, K. H. Kim, and T. M. Sa. 2006. Plant growth substances produced by Methylobacteriumspp.and their effect on tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annum L.) growth. J. Microbiol. Biotechnol. 16:1622-1628
  25. Rivera-Cruz, M. C., A. T. Narcia, G. C. Ballona, J. Kohler, F.Caravaca and A. Roldan. 2008. Poultry manure and banana waste are effective biofertilizer carriers for promoting plant growth and soil sustainability in banana crops. Soil Biol. Biochem. 40:3092-3095 https://doi.org/10.1016/j.soilbio.2008.09.003
  26. Sahrawat, K. L. 2000. Macro and micronutrients removed by upland and lowland rice cultivars in WestAfrica.Commun. Soil Sci. Plant Anal. 31:717-723 https://doi.org/10.1080/00103620009370472
  27. Shrestha, R. K. and J. K. Ladha. 1998. Nitrate in groundwater and integration of nitrogen-catch crop in rice-sweet pepper cropping system. Soil Sci. Soc. Am. J. 62:1610-1619 https://doi.org/10.2136/sssaj1998.03615995006200060019x
  28. Singh, M. S., R. K. T. Devi and N. I. Singh. 1999. Evaluation of methods for Azotobacterapplicationontheyieldofrice.Ind. J. Hill Farming 12:22-24
  29. Stephens, J. H. G. and H. M. Rask. 2000. Inoculant production and formulation. Field Crops Res. 65:249-258 https://doi.org/10.1016/S0378-4290(99)00090-8
  30. Trotsenko Yu, A., E. G. Ivanova and N. V. Doronina. 2001. Aerobic methylotrophic bacteria as phytosymbionts. Mikrobiologiia 70:725-736 https://doi.org/10.1023/A:1013167612105
  31. Wairiu, M. and R. Lal. 2003. Soil organic carbon in relation to cultivation and topsoil removal on sloping lands of Kolombangara, Solomon Islands. Soil Tillage Res. 70:19-27 https://doi.org/10.1016/S0167-1987(02)00116-2