연초 엽의 색 특성과 원격탐사 반사율지표의 상호관계

Relationship Between Color Characteristic and Reflectance Index by Ground-based Remote Sensor for Tobacco Leaves

  • 투고 : 2009.06.12
  • 심사 : 2009.08.06
  • 발행 : 2009.08.28

초록

지상원격탐사 센서를 이용한 황색종의 적숙엽 판단기준을 평가하기 위하여 성숙기에 중엽과 상엽부위에 대하여 수확엽의 녹색도를 5개 수준으로 구분하여 여러 가지 센서지표들의 상호관계를 평가하였다. 건조엽의 색 특성은 색차계(Colorimeter, CR-300)를 이용하여 L, a, b값을 측정하였고 건조엽의 청색도는 육안관찰에 의한 분포정도를 수치화하여 비교 검토하였다. 수확엽의 녹색도에 따른 반사율은 550nm와 675nm에서 녹색도가 증가할수록 감소되는 특성을 보였다. 건조엽의 반사율은 미숙된 엽이 건조된 후 녹색이 잔류되었기 때문에 미숙엽의 675nm 반사율이 더 낮아졌다. 그 결과 동일한 엽위에서 생엽과 건조엽의 반사율지표는 직선적인 정의 상관을 보였다. 또한 건조엽의 청색도는 모든 센서지표들과 유의성 있는 정의 상관을 보였고 명도를 나타내는 색차계 L값은 센서지표들과 유의성 있는 부의 상관을 보였다. 따라서 건조엽의 청색도로 평가된 센서 종류별 적숙엽의 기준은 엽록소 측정치 SPAD 값은 22 이하, 엽록소 측정치 CM-1000 값은 135 이하, 그리고 원격탐사센서 Crop Circle의 gNDVI 값은 0.43 이하로 평가되었다.

To determine the critical level for optimum maturity of flue-cured tobacco leaves (KF118) at the stalk position from cutter to tips, the reflectance index using ground-based remote sensors and chlorophyll meter were investigated. The sensors estimated were Crop $Circle^{TM}$ (Holland Scientific), Green $Seeker^{TM}$ (Ntech Industries), Spectroradiometer (LICOR, LI-1800), Chlorophyll meter (SPAD502, Minolta), and Field $Scout^{TM}$ Chlorophyll meter (CM-1000, Spectrum). The L, a, b values and greenness for flue-cured leaf were measured and estimated for correlation with sensor's measurement of harvested leaf. On a reflectance curve of 340nm~1100 nm, the reflectance peaks on 550nm and 675 nm for the harvested leaf were lowered as change from light green to darker green. Darker green leaf harvested produced darker flue-cured leaf. The reflectance at 675 nm for flue-cured leaf decreased as greenness increased in the harvested leaf. This result means that the red edge band of 675 nm wavelength is related to the absorbance of chlorophyll for photosynthesis. The greenness of flue-cured leaf showed significantly positive correlation with the entire reflectance indexes for harvested leaf while the L value by colorimeter showed negative correlation with greenness of cured leaf. The critical level for optimum maturity of harvested leaf were less than 22, 135, and 0.43 for SPAD reading, CM-1000 reading, and gNDVI by Crop $Circle^{TM}$, respectively. Consequently, ground-based remote sensing providing a non-destructive real-time assessment of plant greenness could be a useful tool in the selection of optimum maturity of flue-cured tobacco leaves in relation to high quality of flue-cured tobacco.

키워드

참고문헌

  1. Arnon, D.J. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidases in Beta vilgaris. Plant Phys. 24:1-15 https://doi.org/10.1104/pp.24.1.1
  2. Cate, R.B.Jr., and L.A. Nelson. 1971. A simple statistical procedure for partioning soil test correlation data into two class. Soil. Sci. Soc. Am. 35 : 658-660 https://doi.org/10.2136/sssaj1971.03615995003500040048x
  3. Chappelle, E.W., M.S. Kim, and J.E. McMurtrey. 1992. Ratio analysis of reflectance spectra(RARS)-An algorithm for the remote estimation of the concentration of chlorophyll achlorophyll b, and carotenoids in soybean leaves. Remote Sens.Environ. 39(3):239-247 https://doi.org/10.1016/0034-4257(92)90089-3
  4. Deering, D.W., Jr., J.W. Rouse, R.H. Haas, and J.A. Schell (1975) Measuring forage production of grazing units from Landsat MSS data, Proceedings of the 10th International Symposium on remote sensing of environment, 06-10 October, Ann Arbor, Michigan (ERIM). 2 : 1169-1178
  5. Gausman, H.W. 1977. Reflectance of leaf components, Remote Sensing of environment, 6(1): 1-9 https://doi.org/10.1016/0034-4257(77)90015-3
  6. Gitelson, A.a., Y.J. Kaufman, and M.N. Merzlyak. 1996. Use of green channel in remote sensing of global vegetation from EOSMODIS. Remote Sens. Environ. 58:289-298 https://doi.org/10.1016/S0034-4257(96)00072-7
  7. Gitelson, A.A. 2004. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. of Plant Physiology, 161(2):165-173 https://doi.org/10.1078/0176-1617-01176
  8. Grant, L. 1987. Diffuse and specular characteristics of leaf reflectance. Remote Sensing of Environ. 22:309-322 https://doi.org/10.1016/0034-4257(87)90064-2
  9. Grant, L. 1987. Diffuse and specular characteristics of leaf reflectance. Remote Sensing of Environ. 22:309-322 https://doi.org/10.1016/0034-4257(87)90064-2
  10. Hatfield, J.L. and P.J. Pinter, Jr. 1993. Remote sensing for crop protection. Crop protection vol 12(6) : 403-413 https://doi.org/10.1016/0261-2194(93)90001-Y
  11. Jackson, R.D., 1983. Spectral indexes in N-space, Remote Sensing of Environment 13(5):409-421 https://doi.org/10.1016/0034-4257(83)90010-X
  12. Richardson, A.J., and C.L. Wiegand. 1977. Distinguishing vegetation from soil background information, Photogrammetric Engineering & Remote Sensing, 43:1541-1552
  13. Schepers, J.S, D.D. Francis, 1998. Precision agriculture-What's in our future, Commun. in Soil Sci. and Plant Anal. 29:1463-1469 https://doi.org/10.1080/00103629809370043
  14. Sellers, P.J., 1985. Canopy reflectance, photosynthesis and transpiration. Int J. Remote Sens. 6:1335-1372 https://doi.org/10.1080/01431168508948283
  15. Shanahan, J.F., J.S. Schepers, D.D. Francis, G.E. Varvel, W.W.Wilhelm, J.M. Tringe, M.K. Schlemmer, and D.J. Major. 2001. Use of remote-sensing imagery to estimate corn grain yield. Agronomy J. 93:583-589 https://doi.org/10.2134/agronj2001.933583x
  16. Slaton, M.R., E.R. Hunt, and W.K. Smith, 2001. Estimating nearinfrared leaf reflectance from leaf structural characteristics, American Journal of Botany, 88(2):278-284 https://doi.org/10.2307/2657019
  17. Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment. 8:127-150 https://doi.org/10.1016/0034-4257(79)90013-0
  18. Wiegand, C.L., A.J. Richardson, D.E. Escobar, and A.H.Gerbermann. 1991. Vegetation indices in crop assessments. Remote Sensing of Environment 35:105-119 https://doi.org/10.1016/0034-4257(91)90004-P