화산회토 감귤원 토양의 시비관리가 토양미생물활성 및 군집구조에 미치는 영향

Effect of Different Fertilization Management Practices on Soil Microbial Activities and Community Structure in Volcanic Ash Citrus Orchard Soil

  • Joa, Jae-Ho (National Institute of Horticultural & Herbal Science, RDA) ;
  • Han, Seung-Gap (National Institute of Horticultural & Herbal Science, RDA) ;
  • Won, Hang-Yeon (National Academy of Agricultural Science, RDA) ;
  • Lim, Han-Cheol (National Institute of Horticultural & Herbal Science, RDA) ;
  • Hyun, Hae-Nam (Major of Plant Resources and Environment, Jeju National University) ;
  • Suh, Jang-Sun (National Academy of Agricultural Science, RDA)
  • 투고 : 2009.05.14
  • 심사 : 2009.06.08
  • 발행 : 2009.06.30

초록

화산회토 감귤원 토양의 시비관리에 따른 토양효소 활성과 인지질 지방산함량을 분석하여 토양미생물활성과 미생물군집구조에 미치는 영향을 평가하고자 수행하였다. 토양은 13년간 시비량을 달리하여 관리되고 있는 무비료구, 퇴비구, 1/2NPK+퇴비구, NPK+퇴비구, NPK구, 3NPK구에서 2007년 3, 5, 7, 9월초에 채취하여 분석하였다. Urease 활성은 3, 5, 9월에 NPK+ 퇴비구에서 가장 높게 나타났으며, 화학비료+퇴비구가 화학비료구보다 높았고, 3월과 5월은 NPK구>퇴비구>무비료구, 7월과 9월은 퇴비구>NPK구>무비료구 순이었다. Dehydrogenase활성은 5월에 1/2NPK+퇴비구가 $4.3ug\;TPF\;g^{-1}\;24h^{-1}$로 무비료구 $2.4ug\;TPF\;g^{-1}\;24h^{-1}$ 보다 높았고 처리간에 통계적 유의성을 나타냈다. $\beta$-glucosidase 활성은 5월에 NPK구와 1/2NPK+퇴비구가 무비료구 보다 높았으며 처리간에 유의성을 나타내었다. 3월에 인지질 지방산 총함량은 NPK+퇴비구가 $349.2n\;mol\;g^{-1}$로 3NPK구 $228.5n\;mol\;g^{-1}$보다 높게 나타났다. 5월은 1/2NPK+퇴비구가 $237.8n\;mol\;g^{-1}$로 3NPK구 $133.1n\;mol\;g^{-1}$보다 높았다. PLFA의 Biomaker에 의한 미생물군들의 분포비율은 조사시기와 처리간에 통계적으로 유의성 있는 변화를 나타내지 않았다. 시기별로 인지질 지방산 함량을 이용하여 처리구별 미생물군집의 변화에 대한 주성분 분석결과 3월의 경우 퇴비구와 3NPK구가 다른 처리구와 다르게 군집구조를 나타냈으나 5월에는 퇴비구와 3NPK구간에 군집구조의 차이가 나타나지 않았으며, 7월과 9월에는 처리구간에 군집구조의 차이가 없었다. 화학비료 시비와 시간적 변이가 미생물 군집구조 변화에 영향을 준 것으로 판단되었다.

This study was performed to evaluate effect of different fertilization management practices on soil microbial activities and community structure using soil enzyme activities and PLFA contents in volcanic ash citrus orchard soil. Six experiment plots have differently managed based on the recommended application rate(NPK) of chemical fertilizer and compost for 13 years. Experiment plots were composed of no-fertilization(control), compost only, half amount of NPK with compost (1/2NPK+COM), NPK, NPK with compost(NPK+COM), and 3 times amount of NPK(3NPK). Soil samples collected in early March, May, July, and September 2007. Urease activity was high at NPK+COM in March, May, and September. It was higher in NPK+COM than in NPK. Urease activity decreased according to the order NPK>compost>control in March and May; compost>NPK>control in July and September. Dehydrogenase activity was significantly higher in 1/2NPK+COM($4.3ug\;TPF\;g^{-1}\;24h^{-1}$) than in control($2.4ug\;TPF\;g^{-1}\;24h^{-1}$), May. $\beta$-glucosidase activity was significantly higher in NPK and 1/2NPK+COM than in control, May. In March, Total PLFA contents were higher in NPK+COM($349.2n\;mol\;g^{-1}$) than in 3NPK($228.5n\;mol\;g^{-1}$). And that were higher in 1/2NPK+COM($237.8n\;mol\;g^{-1}$) than in 3NPK($133.1n\;mol\;g^{-1}$), May. Distribution ratio of soil microbial groups by PLFA biomaker were not significantly difference in between seasonal and treatments. Principal component analysis by PLFA profiles showed that microbial community in compost and 3NPK plot were different compared with other treatments in March. But Differences in compost and 3NPK plot were not found in May. Our result showed that the change of microbial community structure affected by fertilization effect and seasonable variation.

키워드

참고문헌

  1. Allison, V. J., Miller, R.M., Jastrow, J. D., Matamala, R., and. Zak, D. R. 2005. Changes in Soil Microbial Community Structure in a Tallgrass Prairie Chronosequence. Soil Sci. Soc. Am. J. 69:1412-1421 https://doi.org/10.2136/sssaj2004.0252
  2. Baath, E., and T. H. Anderson. 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem.35(7):955-963 https://doi.org/10.1016/S0038-0717(03)00154-8
  3. Bligh, E. G., and W. J. Dyer. 1959. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917 https://doi.org/10.1139/o59-099
  4. Bossio D. A., and K. M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phopholipid fatty acid profiles and substrate utilization patterns. Micro. Ecol. 35:265-278 https://doi.org/10.1007/s002489900082
  5. Bossio D. A., Scow K. M., Gunapala N., and K. J. Grahan. 1998. Determinants of soil microbial communities: Effect of agricultural management, season, and soil type on phospholipid fatty acid profiles. Micro. Ecol. 36:1-12 https://doi.org/10.1007/s002489900087
  6. Clegg, C. D. 2006. Impact of cattle grazing and inorganic fertiliser additions to managed grasslands on the microbial community composition of soils. Appl. Soil Ecol. 31:73-82 https://doi.org/10.1016/j.apsoil.2005.04.003
  7. Debosz, K., P. H. Rasmussen, and A. R. Pedersen.1999. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils : effects of organic matter input. Appl. Soil Ecol. 13:209-218 https://doi.org/10.1016/S0929-1393(99)00034-7
  8. Deenik, J.. 2006. Nitrogen Mineralization potential in important agricultural soils of Hawai'i. Soil Crop Manage. SCM-15: 1-5
  9. Dick, R. P.. 1992. A review: long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric. Ecosyst. Environ. 40:25-36
  10. Dinesh, R., R. P. Dubey, and G. S. Prasad. 1998. Soil microbial biomass and enzyme activities as influenced by organic manure incorporation into soils of a rice-rice system. J. Agro. Crop Sci. 181:173-178 https://doi.org/10.1111/j.1439-037X.1998.tb00414.x
  11. Fredrik D., L. O. Nilsson, and E. Baath. 2008. Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. Soil Biol. Biochem.40:370-379 https://doi.org/10.1016/j.soilbio.2007.08.019
  12. Green, C. T., and K. M. Scow. 2008. Analysis of phospholipid fatty acids(PLFA) to characterize microbial communities in aquifers. Hydrogeo. J. 8:126-141 https://doi.org/10.1007/s100400050013
  13. Han, Seung Gab. 2005. Effects of long-term non-fertilization of nitrogen, phosphorus and potassium on soil chemical properties, three nutrition and productivity of Satsuma Mandarin(Citrus unshiu Marc.). Ph. D. Thesis. Cheju National University. Jeju, Korea
  14. Henmi T., and K. Wada. 1976. Morphology and composition of allophane. Am. Mineral.61:379-390
  15. Hernesma, A., K. Bjorklof, O. Kiikkila, H. Fritze, and K. Haahtela, M. Romantschuk. 2005. Structure and function of microbial communities in the rhizosphere of Scots pine after tree-felling. Soil Biol. Biochem.37:777-785 https://doi.org/10.1016/j.soilbio.2004.10.010
  16. Hu, C., and Z. Cao. 2007. Size and activity of the soil microbial biomass and soil enzyme activity in long-term field experiments. World J. Agri. Sci. 3(1):63-70
  17. JARES. 1993. 수입개방 대응 고품질 생산 감귤원 시비 기준표. p 37
  18. Kemmitt, S. J., D. Wright, K. W.T. Goulding, and D. L. Jones. 2006. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem. 38:898-911 https://doi.org/10.1016/j.soilbio.2005.08.006
  19. Klose, S., and M. A. Tabatabai. 2000. Urease activity of microbial biomass in soils as affected by cropping systems. Biol. Fertil. Soils 31:191-199 https://doi.org/10.1007/s003740050645
  20. Li, W. H., C. B. Zhang, H. B. Jiang, G. R. Xin, and Z. Y. Yang. 2006. Changes in soil microbial community associated with invasion of the exotic weed Mikania micrantha H.B.K. Plant Soil. 281:309-324 https://doi.org/10.1007/s11104-005-9641-3
  21. Marschner, P., E. Kandeler, and B. Marschner. 2003. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem.35:453-461 https://doi.org/10.1016/S0038-0717(02)00297-3
  22. Masami, N. 2002. Unique properties of volcanic ash soils. Glob. Environ. Res. 6(2):99-112 https://doi.org/10.1016/S1093-0191(00)00072-1
  23. Melero, S., K. Vanderlinden, J. C. Ruiz, and E. Madejo. 2009. Soil biochemical response after 23 years of direct drilling under a dryland agriculture system in southwest Spain. J. Agri. Sci. 147:9-15 https://doi.org/10.1017/S0021859608008204
  24. Muyzer, G., and Smalla, K. 1998. Application of Denaturing Gradient Gel Electro-phoresis (DGGE) and temprature gradient gel electrophoresis(TGGE) in microbial ecology. Antonie van Leeuwenhoek. 73:127-141 https://doi.org/10.1023/A:1000669317571
  25. Quilchano, C., and T. Maranon. 2002. Dehydrogenase activity in Mediterranean forest soils. Biol. Fertil. Soils. 35:102-107 https://doi.org/10.1007/s00374-002-0446-8
  26. RDA. 1988. Methods for chemical analysis of soil. Institute of Agricultural Technology
  27. Sardans, J., J. Penuelas, and M. Estiarte. 2008. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Appl. soil ecol. 39:223-235 https://doi.org/10.1016/j.apsoil.2007.12.011
  28. Song, Kwan Cheol. 1990. Andic properties of major soils in Cheju island. Ph. D. Thesis. Seoul National University. Suwon, Korea
  29. Timothy, R. K., and R. P. Dick. 2004. Differentiating microbial and stabilized β-glucosidase activity relative to soil quality. Soil Biol. Bioche. 36:2089-2096 https://doi.org/10.1016/j.soilbio.2004.06.007
  30. Tokashiki T., and K. Wada. 1975. Weathering implications of the mineralogy of clay fractions of two Ando soils. Kyushu. Geoderma. 14:47-62 https://doi.org/10.1016/0016-7061(75)90012-9
  31. Ugolini, F. C., and R. A. Dahlgren. 2002. Soil development in volcanic ash. Glob. Environ. Res. 6(2):69-81
  32. Yu, G., H. Fang, L. Gao, W. Zhang. 2006. Soil organic carbon budget and fertility variation of black soils in Northeast China. Ecolo. Res.21(6):855-867 https://doi.org/10.1007/s11284-006-0033-9