DOI QR코드

DOI QR Code

An Experimental Study on Uniaxial Compressive Behavior of RC Circular Columns Laterally Confined with Prestressing Aramid Fiber Strap

아라미드 스트랩으로 프리스트레싱 횡구속된 RC 원형기둥의 일축압축거동에 관한 실험적 연구

  • Han, Sang-Hoon (Dept. of Civil Engineering, Chungbuk National University) ;
  • Hong, Ki-Nam (Dept. of Civil Engineering, Chungbuk National University) ;
  • Lee, Jae-Bum (Dept. of Civil Engineering, Chungbuk National University)
  • Published : 2009.04.30

Abstract

In this study, strength, stiffness and confinement effect with stress-strain and stress-volumetric strain curves for improved uniaxial compressive behavior of RC circular columns laterally confined with prestressing aramid fiber strap were experimentally investigated. The test variables were the specimens with or without axial reinforcing bar and the number and spacing of strap, prestressing level, the types of reinforcing fiber (CFS, GFS). As a result, the failure type of the columns was very stable and strength increase rate was about 73% comparison with the general RC columns. Moreover, the strain increase rate is very small and the axial displacement confinement effect was very effective compared with existry methods (CFS, GFS), the initial and final lateral confinement effect was excellent.

본 연구에서는 기존의 연구방법을 개선한 프리스트레스가 도입된 아라미드 스트랩으로 횡 구속된 RC 원형기둥의 일축압축 거동에 대하여 강도와 변위에 의한 강성 및 구속효과에 대하여 연구하였으며, 그 프리스트레싱 보강방법 및 과정에 대하여 비교적 상세히 소개하였다. 이 방법으로 보강된 기둥의 파괴형태는 초기 능동 구속압의 작용으로 인하여 변위 증가율이 매우 낮으며 이후 최종 파괴시까지도 그 형상이 유지되는 매우 안정적인 파괴형태를 보이게 된다. 파괴하중 비교 결과 일반 RC 기둥과 비교하여 73% 이상 강도증진 효과를 나타내었다. 또한 변형 증가율이 매우 작으며 이로 인한 변위구속효과가 매우 우수함을 확인할 수 있었다. 기존의 보강방법 (CFS, GFS)과의 비교를 통하여, 상대적으로 작은 면적으로 우수한 강도증진을 보이며 강성증가로 인한 구속효과 역시 우수하며 체적 증가율도 팽창하지 않는 결과를 보였다. 특히, 콘크리트 팽창 이후부터 발휘되는 기존 방법의 구속효과와는 달리, 초기부터 도입되는 프리스트레스트 긴장력에 의한 초기변형 구속효과가 매우 탁월하며, 최종 파괴시까지 체적 변형률이 팽창하지 않는 안정적인 결과를 나타낸다.

Keywords

References

  1. Mander, J. B., Priestley, J. N., and Park, R., “Theoretical Stress-Strain Model for Confined Concrete,” ASCE Journal of Structural Engineering, Vol. 114, No. 8, 1988, pp. 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  2. Hong, K. N. and Han, S. H., “Uniaxial Compression Behavior of High-Strength Concrete Confined by Low-Volumetric Ratio Lateral Ties,” Journal of Korea Concrete Institute, Vol. 17, No. 5, 2005, pp. 843-852. https://doi.org/10.4334/JKCI.2005.17.5.843
  3. Madas, P. and Elnashai, A. S., “A New Passive Confinement Model for the Analysis of Concrete Structures Subjected to Cyclic and Transient Dynamic Loading,” Earthquake Engineering and Structural Dynamics, Vol. 21, No. 2, 1992, pp. 409-431. https://doi.org/10.1002/eqe.4290210503
  4. Shahawy, M., Mirmiran, A., and Beitelman, T., “Test and Modeling of Carbon-Wrapped Concrete Columns,” Composites Part B : Engineering, Vol. 31, Issues 6-7, 2000, pp. 471-480. https://doi.org/10.1016/S1359-8368(00)00021-4
  5. Wang, Y. C. and Hsu, K., “Design of FRP-Wrapped Reinforced Concrete Columns for Enhancing Axial Load Carrying Capacity,” Composite Structures, Vol. 82, Issues 1, 2008, pp. 132-139. https://doi.org/10.1016/j.compstruct.2007.04.002
  6. Lin, H. J. and Liao, C. I., “Compressive Strength of Reinforced Concrete Column ConfinedbyComposite Material,” Composite Structures, Vol. 65, Issues 2, 2004, pp. 239-250. https://doi.org/10.1016/j.compstruct.2003.11.001
  7. Toutanji, H. and Deng, Y., “Strength and Durability Performance of Concrete Axially Loaded Members Confined with AFRP Composite Sheets,” Composites Part B: Engineering, Vol. 33, Issues 4, 2002, pp. 225-261. https://doi.org/10.1016/S1359-8368(02)00016-1
  8. Wang, Y. C. and Restrepo, J. I., “Investigation of Concentrically LoadedReinforced Concrete Column with Glass Fiber-Reinforced Polymer Jacket,” ACI Structural Journal, Vol. 98, No. 3, 2001, pp. 277-385.
  9. 조순호, “GFRP로 구속된 원형단면 콘크리트 단주의 강도 및 변형 특성,” 콘크리트학회 논문집, 19권, 1호, 2007, pp. 121-130.
  10. Porta, A., Manfredi, G., and Cosenza, E., “Ultimate Behaviour of Axially Loaded RC Wall-Like Columns Confined with GFRP,” Composites Part B : Engineering, Vol. 37, Issues 7-8, 2006, pp. 670-478. https://doi.org/10.1016/j.compositesb.2006.01.005
  11. Youssef, M. N., Feng, M. Q., and Mosallam, A. S., “Stress-Strain Model for Concrete Confined by FRP Composites,” Composites Part B: Engineering, Vol. 38, Issues 5-6, 2007, pp. 614-628. https://doi.org/10.1016/j.compositesb.2006.07.020
  12. 이대형, 김영섭, 정영수, “FRP로 보강된 콘크리트의 강도 및 변형률 예측,” 콘크리트학회 논문집, 19권, 3호, 2007, pp. 253-263. https://doi.org/10.4334/JKCI.2007.19.3.253
  13. 조순호, “FRP 합성재료에 의하여 구속된 콘크리트의 응력-변형률 응답 예측,” 콘크리트학회 논문집, 19권, 6호, 2007, pp. 803-810. https://doi.org/10.4334/JKCI.2007.19.6.803
  14. 서대원, 한범석, 신성우, “FRP 보강근을 주근으로 사용한 일방향 콘크리트 슬래브의 거동,” 콘크리트학회 논문집, 19권, 6호, 2007, pp. 763-771. https://doi.org/10.4334/JKCI.2007.19.6.763
  15. 서수연, 윤현도, 최기봉, “탄소섬유로 휨보강된 RC 보의 부착 손실에 대한 거동 특성,” 콘크리트학회 논문집, 19권, 6호, 2007, pp. 795-802. https://doi.org/10.4334/JKCI.2007.19.6.795
  16. 홍성남, 김태완, 박선규, 박종섭, 박영환, “프리스트레스가 도입된 표면매립 CFRP를 이용한 교각 두부 보강에 관한 연구,” 콘크리트학회 논문집, 19권, 5호, 2007, pp. 595-602. https://doi.org/10.4334/JKCI.2007.19.5.595
  17. 박상렬, 김창훈, 홍성룡, “외부 CFRP 프리스트레싱으로 보강된 PSC 보에서 CFRP 텐던의 극한응력,” 콘크리트학회 논문집, 19권, 6호, 2007, pp. 735-744. https://doi.org/10.4334/JKCI.2007.19.6.735
  18. 한상훈, 홍기남, 김형진, 우상균, “CFRP 판으로 프리스트레싱 보강된 RC 보의 휨거동에 관한 실험적 연구,” 대한토목학회 논문집, 26권, 24호, 2006, pp. 301-310.

Cited by

  1. An Experimental Study on Compressive Loading Capacity of Precast Concrete Truss System vol.33, pp.3, 2013, https://doi.org/10.12652/Ksce.2013.33.3.889