DOI QR코드

DOI QR Code

Electrical and Magnetic Properties of BiFeO3 Multiferroic Ceramics

  • 발행 : 2009.06.30

초록

The multiferroic $BiFeO_3$ has been investigated extensively in both thin film and ceramic form. However, the synthesis of a perfect sample with high resistivity is a prerequisite for examining its properties. This paper reports the synthesis of multiferroic $BiFeO_3$ along with its structural, electrical and magnetic properties in ceramic form. Polycrystalline ceramic samples of $BiFeO_3$ were synthesized by solid-state reaction using high purity oxides and carbonates. The formation of a single-phase compound was confirmed by x-ray diffraction and its lattice parameters were determined using a standard computer program. The microstructural studies and density measurement confirmed that the prepared samples were sufficiently dense for an examination of its electrical and magnetic properties. The dc electrical conductivity studies show that the sample was resistive with an activation energy of ${\sim}0.81\;eV$. The magnetization measurement showed a linear ($M{\sim}H$) curve indicating antiferromagnetic characteristics.

키워드

참고문헌

  1. G. A. Smolenski and V. A. Ioffe, Communication no. 71, Colloque International du Magnetisme Grenoble (1958)
  2. G. A. Smolenski, A. I. Agranovskaya, and V. A. Isupov, Fiz. Tverd. Tela, 1, 990 (1959) [Sov. Phys. Solid State 1, 149 (1959)].
  3. E. Ascher, H. Rieder, H. Schmid, and H. Stossel, J. Appl. Phys. 37, 1404 (1966). https://doi.org/10.1063/1.1708493
  4. H. Schmid, Ferroelectrics 162, 317 (1994). https://doi.org/10.1080/00150199408245083
  5. N. A. Hill, J. Phys. Chem. B 104, 6694 (2000). https://doi.org/10.1021/jp000114x
  6. S. Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan, D. G. Schlom, Y. J. Lee, Y. H. Chu, M. P. Cruz, Q. Zhan, T. Zhao, and R. Ramesh, Appl. Phys. Lett. 87, 102903 (2005). https://doi.org/10.1063/1.2041830
  7. M. Flebig, T. Lottermoser, D. Frohlich, A. V. Golsev, and R. V. Pisarev, Nature (London) 419, 819 (2002).
  8. T. Kimura, T. Goto, H. Shintani, K. Ishizada, T. Arima, and Y. Tokura, Nature (London) 426, 55 (2003). https://doi.org/10.1038/nature02018
  9. Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu, and Z. G. Liu, Appl. Phys. Lett. 84, 1731 (2004). https://doi.org/10.1063/1.1667612
  10. N. G. Kim, Y. S. Koo, and J. H. Jung, J. of Magnetics 11, 164 (2006). https://doi.org/10.4283/JMAG.2006.11.4.164
  11. J. Chang, H. M. Jang, and S. Kim, J. of Magnetics 11, 108 (2006). https://doi.org/10.4283/JMAG.2006.11.3.108
  12. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wutting, and R. Ramesh, Science 299, 1719 (2003). https://doi.org/10.1126/science.1080615
  13. J. R. Teague, R. Gerson, and W. J. James, Solid State Commun. 8, 1073 (1970). https://doi.org/10.1016/0038-1098(70)90262-0
  14. M. M. Kumar, V. R. Palkar, K. Shrinivas, and S. V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000). https://doi.org/10.1063/1.126468
  15. J. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P. Pyatakov, A. K. Zvezdin, and D. Viehland, Appl. Phys. Lett. 84, 5261 (2004). https://doi.org/10.1063/1.1764944
  16. Y. Jun, W. Moon, C. Chang, H. Kim, H. Ryu, J. Kim, K. Kim, and S. Hong, Solid State Commun. 135, 133 (2005). https://doi.org/10.1016/j.ssc.2005.03.038
  17. M. M. Kumar, A. Shrinivas, S. V. Suryanarayana, and T. Bhimasankaran, Phys. Status Solidi A 165, 17 (1998). https://doi.org/10.1002/pssb.2221650132
  18. A. J. Jacobson and B. E. F. Fender, J. Phys. C: Solid State Phys. 8, 844 (1975). https://doi.org/10.1088/0022-3719/8/6/015
  19. S. V. Kiselev, R. P. Ozerov, and G. S. Zhdanov, Sov. Phys. Dokl 7, 742 (1963).