• Title/Summary/Keyword: initial burst

Search Result 119, Processing Time 0.033 seconds

Control of Encapsulation Efficiency and Initial Burst in Polymeric Microparticle Systems

  • Yeo, Yeon;Park, Ki-Nam
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • Initial burst is one of the major challenges in protein-encapsulated microparticle systems. Since protein release during the initial stage depends mostly on the diffusional escape of the protein, major approaches to prevent the initial burst have focused on efficient encapsulation of the protein within the microparticles. For this reason, control of encapsulation efficiency and the extent of initial burst are based on common formulation parameters. The present article provides a literature review of the formulation parameters that are known to influence the two properties in the emulsion-solvent evaporation/extraction method. Physical and chemical properties of encapsulating polymers, solvent systems, polymer-drug interactions, and properties of the continuous phase are some of the influential variables. Most parameters affect encapsulation efficiency and initial burst by modifying solidification rate of the dispersed phase. In order to prevent many unfavorable events such as pore formation, drug loss, and drug migration that occur while the dispersed phase is in the semi-solid state, it is important to understand and optimize these variables.

Influence of hydrogen concentration on burst parameters of Zircaloy-4 cladding tube under simulated loss-of-coolant accident

  • Suman, Siddharth
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2047-2053
    • /
    • 2020
  • Single-tube burst tests on hydrogenated Zircaloy-4 nuclear fuel cladding under simulated loss-of-coolant accident are conducted to evaluate the impact of hydrogen on burst parameters. The heating rate and initial pressure are varied from 5 K/s to 150 K/s and 5 bar-80 bar, respectively. The hydrogen concentration in the cladding is in the range of 0-2000 wppm. Burst stress is lower for hydrogenated cladding in α-phase. A significant loss of ductility is observed in α-phase and lower α + β-phase for hydrogenated cladding. However, the burst strain is higher for hydrogenated cladding in β-phase. There is a sigmoidal dependency of rupture area with initial stress and rupture area is larger for hydrogenated cladding. A novel burst stress correlation for hydrogenated Zircaloy-4 cladding has been proposed.

Biochemical Characterization of the Dual Positional Specific Maize Lipoxygenase and the Dependence of Lagging and Initial Burst Phenomenon on pH, Substrate, and Detergent during Pre-steady State Kinetics

  • Cho, Kyoung-Won;Jang, Sung-Kuk;Huon, Thavrak;Park, Sang-Wook;Han, Ok-Soo
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.100-106
    • /
    • 2007
  • The wound-inducible lipoxygenase obtained from maize is one of the nontraditional lipoxygenases that possess dual positional specificity. In this paper, we provide our results on the determination and comparison of the kinetic constants of the maize lipoxygenase, with or without detergents in the steady state, and characterization of the dependence of the kinetic lag phase or initial burst, on pH, substrate, and detergent in the pre-steady state of the lipoxygenase reaction. The oxidation of linoleic acid showed a typical lag phase in the pre-steady state of the lipoxygenase reaction at pH 7.5 in the presence of 0.25% Tween-20 detergent. The reciprocal correlation between the induction period and the enzyme level indicated that this lag phenomenon was attributable to the slow oxidative activation of Fe (II) to Fe (III) at the active site of the enzyme as observed in other lipoxygenase reactions. Contrary to the lagging phenomenon observed at pH 7.5 in the presence of Tween-20, a unique initial burst was observed at pH 6.2 in the absence of detergents. To our knowledge, the initial burst in the oxidation of linoleic acid at pH 6.2 is the first observation in the lipoxygenase reaction. Kinetic constants (Km and kcat values) were largely dependent on the presence of detergent. An inverse correlation of the initial burst period with enzyme levels and interpretations on kinetic constants suggested that the observed initial burst in the oxidation of linoleic acid could be due to the availability of free fatty acids as substrates for binding with the lipoxygenase enzyme.

Prenatal effect of pyrantel pamoate on several hematological parameter of offspring in mice

  • Abdulwahab.A.Noorwall;Ghazi M. Al-Hachim;Award -Omar
    • Archives of Pharmacal Research
    • /
    • v.9 no.2
    • /
    • pp.87-91
    • /
    • 1986
  • In attempt to develop a drug delivery system using serum albumin microspheres, bovine serum albumin microspheres containing antitumar agent. Cytarabine, were prepared. The shape, surface characteristics, size distribution, behavior of in vivo distribution, drug release behavior, and degradation of albumin microsphers in animal liver issue homogenate and proteolytic enzyme were investigated. The shape of albumin microspheres was spherical and the surface was smooth and compact. The size distribution of the albumin microspheres was effected by dispertion forces during emulsification and albumin concentration. Distribution of albumin microspheres after imtravenous administration in rabbit was achieved immediately. In vitro, albumin microsphere matrix was so hard that it retained most of cytarabine except initial burst during the first 10 minutes, and the level of drug release during the initial burst was affected by heating temperature, drug/albumin microsphere matrix was so hard that it retained most of cytarabine except initial burst during the first 10 minutes, and the level of drug release during the initial burst was affected by heating temperature, drug/albumin concentration ratio and size distribution. After drug release test, the morphology of albumin microspheres was not changed. Albumin microsphere matrix was degraded by the animal liver issue homogenate and proteolytic enzyme. The degree of degradation was affected by heating temperature.

  • PDF

Core-shell Poly(D,L-lactide-co-glycolide )/Poly(ethyl 2-cyanoacrylate) Microparticles with Doxorubicin to Reduce Initial Burst Release

  • Lee, Sang-Hyuk;Baek, Hyon-Ho;Kim, Jung-Hyun;Choi, Sung--Wook
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1010-1014
    • /
    • 2009
  • Monodispersed microparticles with a poly(D,L-lactide-co-glycolide) (PLGA) core and a poly(ethyl 2-cyanoacrylate) (PE2CA) shell were prepared by Shirasu porous glass (SPG) membrane emulsification to reduce the initial burst release of doxorubicin (DOX). Solution mixtures with different weight ratios of PLGA polymer and E2CA monomer were permeated under pressure through an SPG membrane with $1.9\;{\mu}m$ pore size into a continuous water phase with sodium lauryl sulfate as a surfactant. Core-shell structured microparticles were formed by the mechanism of anionic interfacial polymerization of E2CA and precipitation of both polymers. The average diameter of the resulting microparticles with various PLGA:E2CA ratios ranged from 1.42 to $2.73\;{\mu}m$. The morphology and core-shell structure of the microparticles were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The DOX release profiles revealed that the microparticles with an equivalent PLGA:E2CA weight ratio of 1:1 exhibited the optimal condition to reduce the initial burst of DOX. The initial release rate of DOX was dependent on the PLGA:E2CA ratio, and was minimized at a 1:1 ratio.

Long-term Follow-up Results of Short-segment Posterior Screw Fixation for Thoracolumbar Burst Fractures

  • Lee, Yoon-Soo;Sung, Joo-Kyung
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.6
    • /
    • pp.416-421
    • /
    • 2005
  • Objective: Despite general agreement on the goals of surgical treatment in thoracolumbar burst fractures, considerable controversy exists regarding the choice of operative techniques. This study is to evaluate the efficacy of short-segment fixation for thoracolumbar burst fractures after long-term follow-up and to analyze the causes of treatment failures. Methods: 48 out of 60 patients who underwent short-segment fixation for thoracolumbar burst fractures between January 1999 and October 2002 were enrolled in this study. Their neurological status, radiological images, and hospital records were retrospectively reviewed. Simple radiographs were evaluated to calculate kyphotic angles and percentages of anterior body compression (%ABC). Results: The average kyphotic angles were $20.0^{\circ}$ preoperatively, $9.6^{\circ}$ postoperatively, and $13.1^{\circ}$ at the latest follow-up. The average %ABC were 47.3% preoperatively, 31.2% postoperatively, and 33.3% at the latest follow-up. The treatment failure, defined as correction loss by $10^{\circ}$ or more or implant failure, was detected in 6 patients (12.5%). 5 out of 6 patients had implant failures. 2 out of 5 patients were related with osteoporosis, and the other 2 were related with poor compliance of spinal bracing. 3 patients with poor initial postoperative alignment had implant failure. 4 patients with screws only on the adjacent vertebrae and not on the injured vertebra itself showed poor initial and overall correction. Conclusion: With proper patient selection, adequate intraoperative reduction with screw fixation involving the injured vertebra, and strict postoperative spinal bracing, the short-segment fixation is an efficient and safe method in the treatment of thoracolumbar burst fracture.

Initial Mass Function and Star Formation History in the Small Magellanic Cloud

  • Lee, Ki-Won
    • Journal of the Korean earth science society
    • /
    • v.35 no.5
    • /
    • pp.362-374
    • /
    • 2014
  • This study investigated the initial mass function (IMF) and star formation history of high-mass stars in the Small Magellanic Cloud (SMC) using a population synthesis technique. We used the photometric survey catalog of Lee (2013) as the observable quantities and compare them with those of synthetic populations based on Bayesian inference. For the IMF slope (${\Gamma}$) range of -1.1 to -3.5 with steps of 0.1, five types of star formation models were tested: 1) continuous; 2) single burst at 10 Myr; 3) single burst at 60 Myr; 4) double bursts at those epochs; and 5) a complex hybrid model. In this study, a total of 125 models were tested. Based on the model calculations, it was found that the continuous model could simulate the high-mass stars of the SMC and that its IMF slope was -1.6 which is slightly steeper than Salpeter's IMF, i.e., ${\Gamma}=-1.35$.

Development of SS-AG20-loaded Polymeric Microparticles by Oil-in-Water (o/w) Emulsion Solvent Evaporation and Spray Drying Methods for Sustained Drug Delivery

  • Choi, Eun-Jung;Bai, Cheng-Zhe;Hong, A-Reum;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3208-3212
    • /
    • 2012
  • Controlled drug delivery systems employing microparticles offer lots of advantages over conventional drug dosage formulations. Microencapsulation technique have been conducted with biodegradable polymers such as poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) for its adjustable biodegradability and biocompatibility. In this study, we evaluated two techniques, oil-in-water (o/w) emulsion solvent evaporation and spray drying, for preparation of polymeric microparticles encapsulating a newly synthesized drug, SS-AG20, for the long-term drug delivery of this low-molecular-weight drug with a very short half-life. Drug-loaded microparticles prepared by the solvent evaporation method showed a smoother morphology; however, relatively poor encapsulation efficiency and drastic initial burst were discovered as drawbacks. Spray-dried drug-loaded microparticles had an imperfect surface with pores and distorted portions so that its initial burst was critical (70.05-87.16%) when the preparation was carried out with a 5% polymeric solution. By increasing the concentration of the polymer, the morphology was refined and undesirable initial burst was circumvented (burst was reduced to 35.93-74.85%) while retaining high encapsulation efficiency. Moreover, by encapsulating the drug with various biodegradable polymers using the spray drying method, gradual and sustained drug release, for up to 2 weeks, was achieved.

Synchronization Design of Satellite TDMA Network

  • Ko, Kyung-Su;Oh, Il-Hyuk;Yoo, Youn-Sang;Oh, Sang-Kyun;Lee, Hui-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.552-559
    • /
    • 2012
  • In this paper, we introduce a frame structure of the satellite TDMA network and the synchronization method thereof. The primary station transmits a special burst called reference burst which provides reference time to network. By using this reference burst all nodes achieve initial acquisition and synchronization. We consider time drift due to the node and satellite mobility, time shift due to the node position, Doppler shift due to the node mobility and frequency offsets as important factors of the frame structure. Simulation results show that the proposed frame structure and synchronization method guarantee accurate synchronization performance when the node is even in low SNR as well as 25 kHz frequency offsets.

New Coating Method for Sustained Drug Release: Surface Modification of ePTFE Grafts by inner coating PLGA

  • Kim, Hyeseon;Park, Seohyeon;Kim, Dae Joong;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1333-1336
    • /
    • 2014
  • Expanded polytetrafluoroethylene (ePTFE) grafts have been used as vascular access for many patients suffering from end stage renal disease. However, the vascular graft can cause significant clinical problems such as stenosis or thrombosis. For this reason, many studies have been performed to make drug eluting graft, but initial burst is major problem in almost drug eluting systems. Therefore we used biodegradable polymer to reduce initial burst and make sustained drug delivery. The ePTFE grafts were dipped into a paclitaxel-dissolved solution and then PLGA-dissolved solution was passed through the lumen of ePTFE. We analyzed whether the dose of paclitaxel is enough and the loading amount of PLGA on ePTFE graft increases according to the coating solution's concentration. Scanning electron microscope (SEM) images of various concentration of PLGA showed that the porous surface of graft was more packed with PLGA by tetrahydrofuran solution dissolved PLGA. In addition, in vitro release profiles of Ptx-PLGA graft demonstrated that early burst was gradually decreased as increasing the concentration of PLGA. These results suggest that PLGA coating of Ptx loaded graft can retard drug release, it is useful tool to control drug release of medical devices.