VARIATIONAL APPROACH AND THE NUMBER OF THE NONTRIVIAL PERIODIC SOLUTIONS FOR A CLASS OF THE SYSTEM OF THE NONTRIVIAL SUSPENSION BRIDGE EQUATIONS

  • Jung, Tack-Sun (DEPARTMENT OF MATHEMATICS, KUNSAN NATIONAL UNIVERSITY) ;
  • Choi, Q-Heung (DEPARTMENT OF MATHEMATICS EDUCATION, INHA UNIVERSITY)
  • Published : 2009.05.31

Abstract

We investigate the multiplicity of the nontrivial periodic solutions for a class of the system of the nonlinear suspension bridge equations with Dirichlet boundary condition and periodic condition. We show that the system has at least two nontrivial periodic solutions by the abstract version of the critical point theory on the manifold with boundary. We investigate the geometry of the sublevel sets of the corresponding functional of the system and the topology of the sublevel sets. Since the functional is strongly indefinite, we use the notion of the suitable version of the Palais-Smale condition.

Keywords

References

  1. T. Bartsch & M. Klapp: Critical point theory for indefinite functionals with symmetries. J. Funct. Anal. (1996), 107-136.
  2. K. C. Chang: Infinite dimensional Morse theory and multiple solution problems. Birkhauser, 1993.
  3. Q. H. Choi & T. Jung : A nonlinear suspension bridge equation with nonconstant load. Nonlinear Analysis TMA 35 (1999), 649-668. https://doi.org/10.1016/S0362-546X(97)00616-0
  4. Q. H. Choi & T. Jung : Multiplicity results for the nonlinear suspension bridge equation. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 9 (2002), 29-38.
  5. Q.H. Choi, T. Jung & P.J. McKenna: The study of a nonlinear suspension bridge equation by a variational reduction method. Applicable Analysis 50 (1993), 73-92. https://doi.org/10.1080/00036819308840185
  6. M. Degiovanni: Homotopical properties of a class of nonsmooth functions. Ann. Mat. Pura Appl. 156 (1990), 37-71. https://doi.org/10.1007/BF01766973
  7. M. Degiovanni, A. Marino & M. Tosques: Evolution equation with lack of convexity. Nonlinear Anal. 9 (1985), 1401-1433. https://doi.org/10.1016/0362-546X(85)90098-7
  8. G. Fournier, D. Lupo, M. Ramos & M. Willem: Limit relative category and critical point theory. Dynam. Report 3 (1993), 1-23.
  9. D. Lupo & A. M. Micheletti : Nontrivial solutions for an asymptotically linear beam equation. Dynam. Systems Appl. 4 (1995), 147-156.
  10. D. Lupo & A. M. Micheletti : Two applications of a three critical points theorem. J. Differential Equations 132 (1996), 222-238. https://doi.org/10.1006/jdeq.1996.0178
  11. P. J. McKenna & W. Walter: Nonlinear oscillations in a suspension bridge. Archive for Rational Mechanics and Analysis 98 (1987), no. 2, 167-177).
  12. Micheletti, A. M. & Saccon, C. : Multiple nontrivial solutions for a floating beam equation via critical point theory. J. Differential Equations 170 (2001), 157-179. https://doi.org/10.1006/jdeq.2000.3820