References
- T. Bartsch & M. Klapp: Critical point theory for indefinite functionals with symmetries. J. Funct. Anal. (1996), 107-136.
- K. C. Chang: Infinite dimensional Morse theory and multiple solution problems. Birkhauser, 1993.
- Q. H. Choi & T. Jung : A nonlinear suspension bridge equation with nonconstant load. Nonlinear Analysis TMA 35 (1999), 649-668. https://doi.org/10.1016/S0362-546X(97)00616-0
- Q. H. Choi & T. Jung : Multiplicity results for the nonlinear suspension bridge equation. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 9 (2002), 29-38.
- Q.H. Choi, T. Jung & P.J. McKenna: The study of a nonlinear suspension bridge equation by a variational reduction method. Applicable Analysis 50 (1993), 73-92. https://doi.org/10.1080/00036819308840185
- M. Degiovanni: Homotopical properties of a class of nonsmooth functions. Ann. Mat. Pura Appl. 156 (1990), 37-71. https://doi.org/10.1007/BF01766973
- M. Degiovanni, A. Marino & M. Tosques: Evolution equation with lack of convexity. Nonlinear Anal. 9 (1985), 1401-1433. https://doi.org/10.1016/0362-546X(85)90098-7
- G. Fournier, D. Lupo, M. Ramos & M. Willem: Limit relative category and critical point theory. Dynam. Report 3 (1993), 1-23.
- D. Lupo & A. M. Micheletti : Nontrivial solutions for an asymptotically linear beam equation. Dynam. Systems Appl. 4 (1995), 147-156.
- D. Lupo & A. M. Micheletti : Two applications of a three critical points theorem. J. Differential Equations 132 (1996), 222-238. https://doi.org/10.1006/jdeq.1996.0178
- P. J. McKenna & W. Walter: Nonlinear oscillations in a suspension bridge. Archive for Rational Mechanics and Analysis 98 (1987), no. 2, 167-177).
- Micheletti, A. M. & Saccon, C. : Multiple nontrivial solutions for a floating beam equation via critical point theory. J. Differential Equations 170 (2001), 157-179. https://doi.org/10.1006/jdeq.2000.3820