References
- P. Gavruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436.
- D. H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- K.- W. Jun & Y.-H. Lee: On the stability of a Cauchy-Jensen functional equation II. preprint.
- K.-W. Jun, Y.-H. Lee & Y.-S. Cho : On the generalized Hyers-Ulam stability of a Cauchy-Jensen functional equation. Abstr. Appl. Anal. 2007 (2007), Art. ID 35151.
- K.-W. Jun, Y.-H. Lee & Y.-S. Cho : On the stability of a Cauchy-Jensen functional equation. Commun. Korean Math. Soc. 23 (2008), 377-386. https://doi.org/10.4134/CKMS.2008.23.3.377
- S.-M. Jung: Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 17 (2004), 1135-1140. https://doi.org/10.1016/j.aml.2003.11.004
- H.-M. Kim: On the stability problem for a mixed type of quadratic and quadratic functional equation. J. Math. Anal. Appl. 324 (2006), 358-372. https://doi.org/10.1016/j.jmaa.2005.11.053
- Y.-H. Lee & D.-W. Park: Generalized Hyers-Ulam stability of a Cauchy-Jensen functional equation. preprint.
-
C.-G. Park: Linear functional equations in Banach modules over a
$C^{*}$ -algebra. Acta Appl. Math. 77 (2003), 125-161. https://doi.org/10.1023/A:1024014026789 - W.-G. Park & J.-H. Bae: On a Cauchy-Jensen functional equation and its stability. J. Math. Anal. Appl. 323 (2006), 634-643. https://doi.org/10.1016/j.jmaa.2005.09.028
- Th. M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- S. M. Ulam: A Collection of Mathematical Problems. Interscience Publ., New York, 1960.