ON THE GENERALIZED HYERS-ULAM STABILITY OF THE CAUCHY-JENSEN FUNCTIONAL EQUATION II

  • Jun, Kil-Woung (DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY) ;
  • Lee, Ju-Ri (DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY) ;
  • Lee, Yang-Hi (DEPARTMENT OF MATHEMATICS EDUCATION, GONGJU NATIONAL UNIVERSITY OF EDUCATION)
  • Published : 2009.05.31

Abstract

In this paper, we obtain the generalized Hyers-Ulam stability of a Cauchy-Jensen functional equation f(x+y, z)-f(x, z)-f(y, z)=0, $$2f\;x,\;{\frac{y+z}{2}}-f(x,\;y)-f(x,\;z)=0$$ in the spirit of P. $G{\breve{a}}vruta$.

Keywords

References

  1. P. Gavruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436.
  2. D. H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  3. K.- W. Jun & Y.-H. Lee: On the stability of a Cauchy-Jensen functional equation II. preprint.
  4. K.-W. Jun, Y.-H. Lee & Y.-S. Cho : On the generalized Hyers-Ulam stability of a Cauchy-Jensen functional equation. Abstr. Appl. Anal. 2007 (2007), Art. ID 35151.
  5. K.-W. Jun, Y.-H. Lee & Y.-S. Cho : On the stability of a Cauchy-Jensen functional equation. Commun. Korean Math. Soc. 23 (2008), 377-386. https://doi.org/10.4134/CKMS.2008.23.3.377
  6. S.-M. Jung: Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 17 (2004), 1135-1140. https://doi.org/10.1016/j.aml.2003.11.004
  7. H.-M. Kim: On the stability problem for a mixed type of quadratic and quadratic functional equation. J. Math. Anal. Appl. 324 (2006), 358-372. https://doi.org/10.1016/j.jmaa.2005.11.053
  8. Y.-H. Lee & D.-W. Park: Generalized Hyers-Ulam stability of a Cauchy-Jensen functional equation. preprint.
  9. C.-G. Park: Linear functional equations in Banach modules over a $C^{*}$-algebra. Acta Appl. Math. 77 (2003), 125-161. https://doi.org/10.1023/A:1024014026789
  10. W.-G. Park & J.-H. Bae: On a Cauchy-Jensen functional equation and its stability. J. Math. Anal. Appl. 323 (2006), 634-643. https://doi.org/10.1016/j.jmaa.2005.09.028
  11. Th. M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  12. S. M. Ulam: A Collection of Mathematical Problems. Interscience Publ., New York, 1960.