References
- S. Banach: Theorie des Operationes Lineaires. Warsaw, 1932.
- P. W. Cholewa: Remarks on the stability of functional equations. Aequationes Math. 27 (1984), 76-86. https://doi.org/10.1007/BF02192660
- E. Deeba, P. K. Sahoo & Shishen Xie: On a class of functional equations in distributions. J. Math. Anal. Appl. 223 (1998), 334-346. https://doi.org/10.1006/jmaa.1998.5995
- E. Deeba & Shishen Xie: Distributional analog of a functional equation. Applied Mathematics Letters 16 (2003), 669-673. https://doi.org/10.1016/S0893-9659(03)00065-X
- I. M. Gelfand & G. E. Shilov: Generalized functions IV, Academic. Press, New York, 1968.
- J. W. Green: Approximately convex functions. Duke Math. J. 19 (1952a), 499-504. https://doi.org/10.1215/S0012-7094-52-01952-2
- L. Hormander: The Analysis of Linear Partial Differential Operator I. Springer-Verlag, Berlin-New York, 1983.
- D. H. Hyers & S. M. Ulam: Approximately convex functions. Proc. Amer. Math. Soc. 3 (1954), 821-828. https://doi.org/10.1090/S0002-9939-1952-0049962-5
- D. H. Hyers, G. Isac & Th. M. Rassias: Stability of Functional Equations in Several Variables. Birkhauser, 1998.
- L. Schwartz: Theorie des distributions. I, II, 2nd ed. Hermann, Paris, 1957.