DOI QR코드

DOI QR Code

A Novel Medium for the Enhanced Production of Cyclosporin A by Tolypocladium inflatum MTCC 557 Using Solid State Fermentation

  • Survase, Shrikant A. (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai) ;
  • Shaligram, Nikhil S. (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai) ;
  • Pansuriya, Ruchir C. (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai) ;
  • Annapure, Uday S. (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai) ;
  • Singhal, Rekha S. (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai)
  • 발행 : 2009.05.31

초록

Cyclosporin A (CyA) produced by Tolypocladium inflatum is a promising drug owing to its immunosuppressive and antifungal activities. From an industrial point of view, the necessity to obtain a suitable and economic medium for higher production of CyA was the aim of this work. The present study evaluated the effect of different fermentation parameters in solid state fermentation, such as selection of solid substrate, hydrolysis of substrates, initial moisture content, supplementation of salts, additional carbon, and nitrogen sources, as well as the inoculum age and size, on production of CyA by Tolypocladium inflatum MTCC 557. The fermentation was carried out at $25{\pm}2^{\circ}C$ for 9 days. A combination of hydrolyzed wheat bran flour and coconut oil cake (1:1) at 70% initial moisture content supported a maximum production of $3,872{\pm}156\;mg$ CyA/kg substrate as compared with $792{\pm}33\;mg/kg$ substrate before optimization. Furthermore, supplementation of salts, glycerol (1% w/w), and ammonium sulfate (1% w/w) increased the production of CyA to $5,454{\pm}75\;mg/kg$ substrate. Inoculation of 5 g of solid substrate with 6 ml of 72-h-old seed culture resulted in a maximum production of $6,480{\pm}95\;mg$ CyA/kg substrate.

키워드

참고문헌

  1. Agathos, S. N., J. W. Marshall, C. Maraiti, R. Parekh, and C. Moshosing. 1986. Physiological and genetic factors for process development of cyclosporin A fermentation. J. Ind. Microbiol. 1: 39-48 https://doi.org/10.1007/BF01569415
  2. Agathos, S. N., G. T. Chun, and J. Lee. 1989. The physiology of cyclosporine A production in submerged cultivation of Tolypocladium inflatum. Folia Microbiol. 34: 394-395
  3. Balakrishnan, K. and A. Pandey. 1996. Influence of amino acids on the biosynthesis of cyclosporin A by Tolypocladium inflatum. Appl. Microbiol. Biotechnol. 45: 800-803 https://doi.org/10.1007/s002530050765
  4. Balakrishnan, K. and A. Pandey. 1996. Production of biologically active secondary metabolites in solid state fermentation. J. Sci. Ind. Res. 55: 365-372
  5. Balaraman, K. and N. Mathew. 2006. Optimization of media composition for the production of cyclosporin A by Tolypocladium species. Indian J. Med. Res. 123: 525-530
  6. Billich, A. and R. Zocher. 1987. Enzymatic synthesis of cyclosporin- A. J. Biol. Chem. 262: 17258-17259
  7. Borel, J. F. 1986. Cyclosporin-A and its future. Progr. Allergy 38: 9-18
  8. Bussari, B., P. S. Saudagar, N. S. Shaligram, S. A. Survase, and R. S. Singhal. 2008. Production of cephamycin C by Streptomyces clavuligerus NT4 using solid-state fermentation. J. Ind. Microbiol. Biotechnol. 35: 49-58 https://doi.org/10.1007/s10295-007-0265-x
  9. Ellaiah, P., K. Adinarayana, Y. Bhavani, P. Padmaja, and B. Srinivasulu. 2002. Optimization of process parameters for glucoamylase production under solid state fermentation by a newly isolated Aspergillus species. Process Biochem. 38: 615-620 https://doi.org/10.1016/S0032-9592(02)00188-7
  10. Gervais, P. and P. Molin. 2003. The role of water in solid-state fermentation. Biochem. Eng. J. 13: 85-101 https://doi.org/10.1016/S1369-703X(02)00122-5
  11. Isaac, C. C., A. Jones, and M. A. Pickard. 1990. Production of cyclosporin A by Tolypocladium niveum strains. Antimicrob. Agents Chemother. 34: 121-127 https://doi.org/10.1128/AAC.34.1.121
  12. Kahan, B. D. (Ed) 1984. Cyclosporin: Biological Activity and Clinical Applications. Crune & Straton Inc, Orlando
  13. Krishna, C. and M. Chandrasekaran. 1996. Banana waste as substrate for α-amylase production by Bacillus subtilis (CBTK 106) under solid-state fermentation. Appl. Microbiol. Biotechnol. 46: 106-111 https://doi.org/10.1007/s002530050790
  14. Lee, J. and S. Agathos. 1989. Effect of amino acids on the production of cyclosporin A by T. inflatum. Biotechnol. Lett. 2: 77-82 https://doi.org/10.1007/BF01192178
  15. Lonsane, B. K., N. P. Ghildyal, S. Budiatman, and S. V. Ramakrishna. 1985. Engineering aspects of solid state fermentation. Enz. Microb. Technol. 7: 256-265 https://doi.org/10.1016/0141-0229(85)90083-3
  16. Nakajima, H., T. Hamasaki, K. Nishimura, Y. Kimura, S. Udagawa, and S. Sato. 1988. Isolation of 2-acetylamino-3-hydroxy-4-methyloct- 6-enoic acid, a derivative of the 'C9 amino acid' residue of cyclosporins, produced by the fungus Neocosmospora vasinfecta E. F. Smith. Agric. Biol. Chem. 52: 1621-1623 https://doi.org/10.1271/bbb1961.52.1621
  17. Niederberger, W., P. Schaub, and T. Beveridge. 1980. High performance liquid chromatography determination of cyclosporin- A in human plasma and urine. J. Chromatogr. 182: 454-458 https://doi.org/10.1016/S0378-4347(00)81500-5
  18. Owusu-Domefeh, K., D. A. Christensen, and B. D. Owen. 1970. Nutritive value of some Ghanian feed stuffs. Can. J. Anim. Sci. 50: 1-14 https://doi.org/10.4141/cjas70-001
  19. P$\acute{e}$rez-Guerra, N., A. Torrado-Agrasar, C. Lopez-Macias, and L. Pastrana. 2003. Main characteristics and applications of solid substrate fermentation. Electron. J. Environ. Agric. Food Chem. 2: 1-8
  20. Prior, B. A., J. C. D. Preez, and P. W. Rein. 1992. Environmental parameters, pp. 65-85. In H. W. Doelle, D. A. Mitchell and C. E. Rolz (eds.), Solid Substrate Cultivation. Elsevier Applied Science, London
  21. Raimbault, M. 1998. General and microbial aspects of solid state fermentation. Elec. J. Biotechnol. 1: 11-15
  22. Ramana Murthy, M. V., E. V. S. Mohan, and A. K. Sadhukhan. 1999. Cyclosporin A production by Tolypocladium inflatum using solid state fermentation. Process Biochem. 34: 269-280 https://doi.org/10.1016/S0032-9592(98)00095-8
  23. Ramana Murthy, M. V., N. G. Karanth, and K. S. M. S. Raghava Rao. 1993. Biochemical engineering aspects of solid state fermentation. Adv. Appl. Microbiol. 39: 99-149
  24. Sallam, L. A. R., A. H. El-Refai, A. A. Hamdi, A. H. El-Minofi, and S. I. Abd-Elsalam. 2003. Role of some fermentation parameters on cyclosporin A production by a new isolate of A. terreus. J. Gen. Appl. Microbiol. 49: 321-328 https://doi.org/10.2323/jgam.49.321
  25. Sawai, K., T. Okuno, Y. Tereda, Y. Harada. K.Wawamura, H. Sasaki, and S. Takao. 1981. Isolation and properties of two antifungal substances from Fusarium solani. Agric. Biol. Chem. 45: 1223-1228 https://doi.org/10.1271/bbb1961.45.1223
  26. Schindler, R. (Ed) 1985. Cyclosporin in Autoimmune Diseases. Springer-Verlag, Berlin
  27. Sekar, C. and K. Balaraman. 1998. Optimization studies on the production of cyclosporin A by solid state fermentation. Bioproc Eng 18: 293-296 https://doi.org/10.1007/s004490050444
  28. Sekar, C., V. W. Rajasekar, and K. Balaraman. 1997. Production of cyclosporin A by solid state fermentation. Bioproc Eng 17: 257-259 https://doi.org/10.1007/s004490050383
  29. Shaligram, N. S., S. K. Singh, R. S. Singhal, G. Szakacs, and A. Pandey. 2008. Compactin production in solid state fermentation using orthogonal array method by P. brevicompactum. Biochem. Eng. J. 41: 295-300 https://doi.org/10.1016/j.bej.2008.05.011
  30. Tengerdy, R. P. 1985. Solid substrate fermentation. Trends Biotechnol. 3: 96-99 https://doi.org/10.1016/0167-7799(85)90092-7
  31. Zocher, R., N. Madry, H. Peeters, and H. Kleinkauf. 1984. Biosynthesis of cyclosporin-A. Phytochemistry 23: 549-551 https://doi.org/10.1016/S0031-9422(00)80378-7

피인용 문헌

  1. Use of Coconut Coir Fibers as an Inert Solid Support for Production of Cyclosporin A vol.14, pp.6, 2009, https://doi.org/10.1007/s12257-009-0121-0
  2. Statistical Optimization for Improved Production of Cyclosporin A in Solid-State Fermentation vol.19, pp.11, 2009, https://doi.org/10.4014/jmb.0901.0035
  3. Gellan Gum as Immobilization Matrix for Production of Cyclosporin A vol.20, pp.7, 2009, https://doi.org/10.4014/jmb.1001.01006
  4. Cyclosporin A - A review on fermentative production, downstream processing and pharmacological applications vol.29, pp.4, 2009, https://doi.org/10.1016/j.biotechadv.2011.03.004
  5. The Influence of Chemical Mutagenesis on the Properties of the Cyclosporine a High-Producer Strain Tolypocladium inflatum VKM F-3630D vol.54, pp.1, 2009, https://doi.org/10.1134/s0003683818010027