DOI QR코드

DOI QR Code

Mach-Zehnder Type Tandem Optical Switch/Modulator using a Single-Mode Interconnecting Waveguide and Its Switching Characteristics

  • Choi, Young-Kyu (Dept. of Electronic Engineering, Faculty of Engineering, Silla Univerity)
  • 발행 : 2009.06.30

초록

In this paper, an optical switch/modulator is designed and its light propagating characteristics analyzed using a simplified BPM. The distinctive feature of this switch/modulator is that all its waveguide branches are designed as single-mode. The principle of the device is based on the coupled mode theory in the Y-junction interconnecting waveguide. In spite of the fact all waveguides are designed as single-mode, by adjusting the interconnecting waveguide length'of the device the same characteristics as existing up to date devices are obtainable. Numerical results show that the switching characteristics periodically depend upon an interconnecting waveguide length with a spatial of about $150^{{\mu}m}$ in the $Ti:LiNbO_3$ step index waveguide. The design concept would therefore be utilized effectively in fabricating a monolithic high density optical integrated circuit.

키워드

참고문헌

  1. Gonnan, T., and Haxha, S., 'Design optimization of Zcut lithium niobate electrooptic modulator with profiled metal electrodes and waveguide', IEEE, J. Lightwave Tech., vol. 25, no. 12, pp. 3722-3728, Dec. 2007
  2. Yi-Kuei, and Wang, Way-Seen, 'Design and fabrication of sidewalls-extended electrode configuration for ridged lithium niobate electrooptical modulator', IEEE, J. Lightwave Tech., vol. 26, no. 2, pp. 286-290, Jan. 2008 https://doi.org/10.1109/JLT.2007.909863
  3. Haxha, S., Rahman, B. M. A., and Grattan, K. T. V., ' Bandwidth estimation for ultra-high-speed lithium niobate modulators'’, Appl. Opt. , vol. 42, no. 15, pp. 2674-2682, May 2003 https://doi.org/10.1364/AO.42.002674
  4. Tomeh, M. M., Goasguen, S., and EI-Ghazaly, S. M., 'Time-domain optical response of an electrooptic modulator using FDTD', IEEE Trans. Microw. The ory Tech., vol. 49, no. 12, pp. 2276-2281, Dec. 2001 https://doi.org/10.1109/22.971610
  5. Leuthold, J., Besse, P. A., Ecker, J., Gamper, E., Dulk, M., and Melchior, H., ' All-optical space switches with gain and principally ideal extinction ratios', IEEE. J Quantum Electron., vol. 34, pp. 622-633, Apr. 1998 https://doi.org/10.1109/3.663439
  6. Haruna, M., and Koyama, J., ' Electrooptical branchmg waveguide switches and the application to 1x4 optical switching networks', IEEE. J. Lightwave Tech vol. LT-1 No. 1, pp. 223-227, Mar. 1983
  7. Weissman, Z., Hardy, A., and Marom, E., 'ModeDependent radiation loss in Y-junctions and directional couplers', IEEE., J Quantum Electron., vol. 25, No. 6, June, 1989
  8. Szustalkowski, M., and Marciniak, M., ' Light power division in a monomode Ti:$LiNbO_3$ waveguide Yjunction power-combiner-power-divider sequence', Optics Commun. vol. 81 , No. 1, 2, Feb. 1991
  9. Leuthold, J., Ecker, J., Gamper, E., Besse, P.A., and Melchior, H., 'Multimode interference couplers for the conversion and combining of zero- and first-order modes', J Lightwave Technol, vol. 16, pp. 1228-1239, July, 1998 https://doi.org/10.1109/50.701401
  10. Silberg, Y., Perlmutter, P., and Baron, J. E., 'Digital optical switch', Appl. Phys. Lett., vol. 51, pp. 1230-1232, 1987 https://doi.org/10.1063/1.98739
  11. Papuchon, M., and Roy, A., 'Electrically active optical bifurcation; BOA', Appl. Phys. Lett. vol. 31 , no. 4, pp. 266-267, Aug. 1977 https://doi.org/10.1063/1.89655
  12. Tasi, C. S., Kim, B., and EI-Akkari, F. R., 'Optical channel waveguide switch and coupler using total intemal reflection' , IEEE. J Quantμm Electron., vol. QE-14, no. 7, pp. 513-517, July, 1978
  13. Martin, W. E., 'Anew waveguide switch/modulator for integrated optics', Appl. Phys. Letters, vol. 26, no. 10, pp. 562, May 1975
  14. Fujiwara, T., Izutsu, M., Murata, H., Tanabe, Y., and Sueta, T., ' Analysis of SHG in fonn of cerenkov radiation,' IEICE Tech. Report (Japanese), vol. 88, no. 416, pp. 77-83, June 1989
  15. Thylen, L., 'The beam propagation method: an analysis of its applicability,' Optical and Quantum Electronics, vol. 15, no. 10, pp. 433-448, Sept. 1983 https://doi.org/10.1007/BF00619865

피인용 문헌

  1. Enhanced inline conversion of fiber Bragg grating spectra based on increased polarization controllability vol.293, 2013, https://doi.org/10.1016/j.optcom.2012.11.013
  2. Laser-Assisted Control of Electrical Oscillation in VO2Thin Films Grown by Pulsed Laser Deposition vol.51, pp.10R, 2012, https://doi.org/10.7567/JJAP.51.107302
  3. Current-Controlled Tunable Fiber Multiwavelength Filter Based on Polarization-Diversity Loop Structure vol.50, pp.6, 2011, https://doi.org/10.1143/JJAP.50.062502
  4. Photo-assisted bistable switching using Mott transition in two-terminal VO2 device vol.100, pp.1, 2012, https://doi.org/10.1063/1.3672812
  5. Photo-Assisted Electrical Oscillation in Two-Terminal Device Based on Vanadium Dioxide Thin Film vol.30, pp.16, 2012, https://doi.org/10.1109/JLT.2012.2199466
  6. Study on spectral deviations of high-order optical fiber comb filter based on polarization-diversity loop configuration vol.301-302, 2013, https://doi.org/10.1016/j.optcom.2013.03.017
  7. Thermally- or optically-biased memristive switching in two-terminal VO2 devices vol.14, pp.9, 2014, https://doi.org/10.1016/j.cap.2014.06.015
  8. Bidirectional laser triggering of planar device based on vanadium dioxide thin film vol.22, pp.8, 2014, https://doi.org/10.1364/OE.22.009016
  9. Fiber-optic hydrogen sensor based on polarization-diversity loop interferometer vol.62, pp.4, 2013, https://doi.org/10.3938/jkps.62.575
  10. Current-Controlled Tunable Fiber Multiwavelength Filter Based on Polarization-Diversity Loop Structure vol.50, pp.6R, 2011, https://doi.org/10.7567/JJAP.50.062502