히드록시프로필 셀룰로오스들 그리고 (부톡시프로필)셀룰로오스들의 열 및 콜레스테릭 상의 특성

Thermal and Cholesteric Mesophase Properties of Hydroxypropyl Celluloses and (Butoxypropyl)celluloses

  • 정승용 (단국대학교 광 에너지소재 연구센터) ;
  • 마영대 (단국대학교 광 에너지소재 연구센터)
  • Jeong, Seung-Yong (Center for Photofunctional Energy Materials, Dankook University) ;
  • Ma, Yung-Dae (Center for Photofunctional Energy Materials, Dankook University)
  • 발행 : 2009.05.25

초록

치환도(DS) 그리고 몰치환도(MS)가 각각 $2.10{\sim}2.71$ 그리고 $2.3{\sim}6.7$ 범위에 있는 9종류의 히드록시프로필 셀룰로오스들(HPCs) 그리고 $2.3\;{\le}\;MS\;{\le}\;6.7$인 HPC들을 이용하여 7종류의 완전치환 부타노화 HPCs(BPCs)를 합성함과 동시에 HPC들의 분자특성과 유도체들의 열방성 액정 특성을 검토하였다. DS가 작은 범위에서는 MS와 DS는 거의 동일하였다. 그러나, $DS{\gtrsim}1$인 범위에서는 DS에 비해 MS는 대단히 큰 경향을 나타냈다. 이러한 사실은 반응이 진행됨에 따라 프로필렌 옥사이드는 주사슬보다는 곁사슬들에 우선적으로 부가됨을 시사한다. 모든 유도체들은 우측방향의 나선구조를 지닌 쌍방성 콜레스테릭 상들을 형성하였다. HPC들 그리고 BPC들의 유리전이 그리고 액정 상에서 액체상으로 전이온도들은 MS가 증가함에 따라 낮아졌다. HPC 자체들과 동일하게 BPC들의 광학피치들(${\lambda}_m'S$)은 온도가 상승함에 따라 증가하였다. 그러나, HPC들 그리고 BPC들이 동일한 온도에서 나타내는 ${\lambda}_m$들은 MS가 증가함에 따라 증가하였다. 또한, HPC들이 나타내는 ${\lambda}_m$의 온도의존성은 BPC의 경우에 비해 약하였다. 이러한 사실은 셀룰로오스 사슬에 의한 나선의 비틀림력은 셀룰로오스 사슬에 도입된 곁사슬의 길이와 화학구조에 민감하게 의존함을 시사한다.

Nine kinds of hydroxypropyl celluloses (HPCs) with degree of substitution (DS) and molar substitution (MS) ranging from 2.10 to 2.71 and 2.3 to 6.7, respectively and seven kinds of fully butanoated HPCs (BPCs) based on the HPCs with $2.3\;{\le}\;MS\;{\le}\;6.7$ were synthesized, and the molecular characteristics of HPCs and the thermotropic liquid crystalline properties of the derivatives were investigated. MS was nearly equal to DS for small value of DS, but it became exceedly larger than DS for $DS{\gtrsim}1$, showing that in the later stages of reaction, propylene oxide preferentially adds to the side chains rather than the main chain. All the derivatives formed enantiotropic cholesteric phases with right-handed helical structures. The glass and clearing transition temperatures of both HPCs and BPCs were decreased with increasing MS. The optical pitches (${\lambda}_m'S$) of BPCs, as well as HPCs themselves, increased with increasing temperature. However, the ${\lambda}_m'S$ of both HPCs and BPCs at the same temperature increased with increasing MS. Moreover, the temperature dependence of ${\lambda}_m$ of HPCs was weaker than that of BPCs, suggesting that the helical twisting power of the cellulose chain highly depends on the length and chemical structure of the side chain introduced in cellulose chain.

키워드

참고문헌

  1. T. Fukuda, Y. Tsujii, and T. Miyamoto, Macromol. Symp., 99, 257 (1995) https://doi.org/10.1002/masy.19950990127
  2. T. A. Yamagishi, F. Guittard, M. H. Godinho, A. F. Martins, A. Cambon, and P. Sixou, Polym. Bull., 32, 47 (1994) https://doi.org/10.1007/BF00297413
  3. T. A. Yamagishi and P. Sixou, Polymer, 36, 2315 (1995) https://doi.org/10.1016/0032-3861(95)95313-P
  4. F. Guittard, T. Yamagishi, A. Cambon, and P. Sixou, Macromolecules, 27, 6998 (1994) https://doi.org/10.1021/ma00101a046
  5. J. Rusig, M. H. Godinho, L. Varichon, P. Sixou, J. Denier, C. Filliatre, and A. F. Martins, J. Polym. Sci. Part B: Polym. Phys., 32, 1907 (1994) https://doi.org/10.1002/polb.1994.090321108
  6. P. Zugenmaier, Handbook of Liquid Crystals, D. Demus, J.Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 3, Chap. IX, p 453 (1998)
  7. P. Wojciechowski, J. Appl. Polym. Sci., 76, 837 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000509)76:6<837::AID-APP9>3.0.CO;2-P
  8. E. Arici, A. Greiner, H. Hou, A. Reuning, and J. H. Wendorff, Macromol. Chem. Phys., 201, 2083 (2001) https://doi.org/10.1002/1521-3935(20001001)201:15<2083::AID-MACP2083>3.0.CO;2-V
  9. H. Hou, A. Reuning, J. H. Wendorff, and A. Greiner, Macromol. Chem. Phys., 201, 2050 (2000) https://doi.org/10.1002/1521-3935(20001001)201:15<2050::AID-MACP2050>3.0.CO;2-I
  10. B. Huang, J. J. Ge, Y. Li, and H. Hou, Polymer, 48, 264 (2007) https://doi.org/10.1016/j.polymer.2006.11.033
  11. S.-Y. Jeong, J.-H. Jeong, Y.-D. Ma, and Y. Tsujii, Polymer (Korea), 25, 279 (2001)
  12. S.-Y. Jeong, J.-H. Choi, and Y.-D. Ma, Polymer(Korea), 26, 523 (2002)
  13. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer(Korea), 28, 92 (2004)
  14. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 32, 446 (2008)
  15. K.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer(Korea), 25, 545 (2001)
  16. J. Gao, G. Haidar, X. Lu, and Z. Hu, Macromolecules, 34, 2242 (2001) https://doi.org/10.1021/ma001631g
  17. Z. Hu, X. L. Jun, J. Gao, and C. Wang, Adv. Mater., 12, 1173 (2000) https://doi.org/10.1002/1521-4095(200008)12:16<1173::AID-ADMA1173>3.0.CO;2-Z
  18. X. Lu, Z. Hu, and J. Gao, Macromolecules, 33, 8698 (2000) https://doi.org/10.1021/ma000776k
  19. B. G. Kabra, S. H. Gehrke, and R. J. Spontak, Macromolecules, 31, 2166 (1998) https://doi.org/10.1021/ma970418q
  20. N. Mori, M. Morimoto, and K. Nakamura, Macromolecules, 32, 1488 (1999) https://doi.org/10.1021/ma981531z
  21. P. L. Almeida, S. Tavares, A. F. Martins, M. H. Godinho, M. T. Cidade, and J. L. Figueirinhas, Opt. Mater., 20, 97 (2002) https://doi.org/10.1016/S0925-3467(02)00051-4
  22. P. J. Sebastiao, C. Cruz, D. Pires, A. Ferraz, P. Brogueira, and M. H. Godinho, Liq. Cryst., 29, 1491 (2002) https://doi.org/10.1080/0267829021000034835
  23. P. L. Almeida, M. H. Godinho, M. T. Cidade, P. Nunes, A. Marques, R. Martins, E. Fortunato, and J. L. Figueirinhas, Syn. Mater., 127, 111 (2002) https://doi.org/10.1016/S0379-6779(01)00613-0
  24. P. L. Almeida, G. Lavareda, C. Nunes de Carvalho, A. Amaral, M. H. Godinho, M. T. Cidade, and J. L. Figueirinhas, Liq. Cryst., 29, 475 (2002) https://doi.org/10.1080/02678290110113487
  25. C. Nunes de Carvalho, A. Luis, G. Lavareda, A. Amaral, P. Brogueira, and M. H. Godinho, Opt. Mater., 17, 287 (2001) https://doi.org/10.1016/S0925-3467(01)00094-5
  26. D. L. Almeida, M. H. Godinho, M. T. Cidade, and J. L. Figueirinhas, Mol, Cryst. Liq. Cryst., 368, 121 (2001) https://doi.org/10.1080/10587250108029938
  27. Y. Nishio, R. Chiba, Y. Miyashita, K. Oshima, T. Miyajima, N. Kimura, and H. Suzuki, Polym. J., 34, 149 (2003) https://doi.org/10.1295/polymj.34.149
  28. R. Chiba, Y. Nishio, and Y. Miyashita, Macromolecules, 36, 1706 (2003) https://doi.org/10.1021/ma021522x
  29. X. Xia, S. Tang, X. Lu, and Z. Hu, Macromolecules, 32, 3695 (2003)
  30. E. B. Barmatov, M. V. Barmotova, B.-S. Moon, and J.-G. Park, Macromolecules, 37, 5490 (2004) https://doi.org/10.1021/ma034936e
  31. Y. Nishio and Y. Fujiki, J. Macromol. Sci.-Phys., B 30, 357 (1991) https://doi.org/10.1080/00222349108219483
  32. L. Okrasa, G. Boiteux, J. Ulanski, and G. Seytre, Polymer, 42, 3817 (2001) https://doi.org/10.1016/S0032-3861(00)00681-9
  33. X. Xu, Z. Hu, and J. Schwartz, Macromolecules, 35, 9164 (2002) https://doi.org/10.1021/ma0208842
  34. M. Amaike and H. Yamamoto, Polym. J., 38, 703 (2006) https://doi.org/10.1295/polymj.PJ2005198
  35. M. F. Francis, M. Priredda, M. Cristea, and F. M. Winnik, Polymeric Drug Delivery Ⅰ, Particulate Drug Carriers, S. Svenson, Editor, ACS Symp. Ser., 923, 55 (2006) https://doi.org/10.1021/bk-2006-0923.ch005
  36. M. F. Francis, M. Piredda, and F. M. Winnik, Polysaccharides for Drug Delivery and Pharmaceutical Applications, R. H. Marchessault, F. R. Ravenelle, and X. X. Zhu, Editors, ACS Symp. Ser., 934, 57 (2006) https://doi.org/10.1021/bk-2006-0934.ch003
  37. K. Kimura, T. Shigemura, M. Kubo, and Y. Maru, Makromol. Chem., 186, 61 (1985) https://doi.org/10.1002/macp.1985.021860107
  38. E. D. Klug, U. S. Patent 3,278,520 and 3,278,521 (1966)
  39. T. Fukuda, T. Sato, and T. Miyamoto, SENI-GAKKAISHI, 48, 320 (1992) https://doi.org/10.2115/fiber.48.7_320
  40. K. Shimamura, J. L. White, and J. F. Fellers, J. Appl. Polym. Sci., 26, 2165 (1981) https://doi.org/10.1002/app.1981.070260705
  41. Y. Huang, J. Appl. Polym. Sci., 51, 1979 (1994) https://doi.org/10.1002/app.1994.070511114
  42. T. Yamagishi, Ph. D. Dissertation, Kyoto University (1989)
  43. H. Coles, Handbook of Liquid Crystals, D. Denus, J. Goodby, G. W. Gray, H. -W. Spiess, and V. Vill, Editors, Wiley-VCH, Weinheim-New York, Vol 2A, Chap Ⅳ, p 335 (1998)
  44. C. Jianan, H. Yifang, Y. Jinyue, Y. Shaoqiong, and Y. Hua, J. Appl. Polym. Sci., 45, 2153 (1992) https://doi.org/10.1002/app.1992.070451211
  45. S. Fortin and G. Charlet, Macromolecules, 22, 2286 (1989) https://doi.org/10.1021/ma00195a050
  46. M. G. Wirick and M. H. Waldman, J. Appl. Polym. Sci., 14, 579 (1970) https://doi.org/10.1002/app.1970.070140306
  47. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 31, 356 (2007)
  48. Ya. S. Freidzon and V. P. Shibaev, Liquid-Crystal Polymers, N. A. Plate, Editor, Plenum Press, New York, Chap 7, p 251 (1993)
  49. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 32, 169 (2008)
  50. H. de Vires, Acta Crystallogr., 4, 219 (1951) https://doi.org/10.1107/S0365110X51000751
  51. Y. P. Shibaev and Y. V. Yekaeva, Polym. Sci. U.S.S.R.(Engl. Tranl.), 29, 2914 (1987) https://doi.org/10.1016/0032-3950(87)90215-2