스티릴피리딘 곁사슬기를 가지는 용해성 폴리이미드의 합성과 광배향

Synthesis and Photoalignment of Soluble Polyimides with Styrylpyridine Side Groups

  • 김진우 (경북대학교 고분자공학과) ;
  • 김민우 (경북대학교 고분자공학과) ;
  • 안득균 (경북대학교 고분자공학과) ;
  • 김우식 (경북대학교 고분자공학과)
  • Kim, Jin-Woo (Department of Polymer Science, Kyungpook National University) ;
  • Kim, Min-Woo (Department of Polymer Science, Kyungpook National University) ;
  • Ahn, Deuk-Kyoon (Department of Polymer Science, Kyungpook National University) ;
  • Kim, Woo-Sik (Department of Polymer Science, Kyungpook National University)
  • 발행 : 2009.05.25

초록

감광성 폴리이미드의 전구체 폴리이미드는 2, 2, 2-트리플루오르에탄 디안하이드라이드의 유도체와 3,3'-디히드록시-4,4'-디아미노비페닐로부터 제조하였다. 감광성 폴리이미드(PI-SP6와 PI-SP12)는 전구체 폴리이미드와 감광성 2-스티릴피리딘알킬렌(헥실렌과 도데실렌)유도체로부터 제조하였다. 합성한 광반응성 폴리이미드는 여러 가지 유기 용매에 잘 녹았다. 감광성 폴리이미드의 초기 열분해온도는 $350^{\circ}C$였다. PI-SP6와 PI-SP12의 유리전이온도는 $130^{\circ}C$$85^{\circ}C$였다. 이는 헥실렌기를 가지는 PI-SP6 보다 도데실렌기를 가지는 PI-SP12가 유연하다는 것을 의미한다. 이들 감광성 고분자의 필름은 $250^{\circ}C$에서도 90%의 투과율을 유지하였다. 이 결과는 이들 감광성 폴리이미드가 투명성 및 내열성이 우수한 고분자라는 것을 의미한다. PI-SP6와 PI-SP12는 $1.5\;J/cm^2$ 광량에서 이색비가 각각 0.01과 0.03이었다. 이 결과는 광배향에 유연한 알킬렌 스페이서를 가지는 감광성 폴리이미드가 보다 효과적이라는 것을 뜻한다.

The precursor polyimide of the photoreactive polyimides(PI-SP6 and PI-SP12) was prepared from a derivative of 2, 2, 2-trifluoroethane dianhydride and 3,3'-dihydroxy-4,4'-diaminobiphenyl. PI-SP6 and PI-SP12 were then prepared by the polymer reactions of the precursor polyimide with photoreactive 2-styrylpyridine alkylene (hexylene and dodecylene) derivatives, respectively. The photoreactive polymers were soluble in organic solvents. The polymers showed the initial decomposition temperatures around $350^{\circ}C$. The glass transition temperatures of PI-SP6 and PI-SP12 were found to be $130^{\circ}C$ and $85^{\circ}C$, respectively. This result means that the latter polymer is more flexible than the former polymer. Their transmittance in the film state was 90% at $250^{\circ}C$, which indicates that the photosensitive polyimides with thermal stability have high optical transparency even at the high temperature. The respective dichroic ratios of PI-SP6 and PI-SP12 were found to be 0.01 and 0.03 at an exposure energy of $1.5\;J/cm^2$. This result suggests that the latter polymer with larger flexibility compared to the former polymer is more effective for the photoalignment.

키워드

참고문헌

  1. T. Kimura, T. Y. Kim, T. Fukuda, and H. Matsuda, Macromol. Chem. Phys., 203, 2344 (2002) https://doi.org/10.1002/macp.200290006
  2. B. Chae, S. B. Kim, S. W. Lee, S. I. Kim, W. Choi, B. Lee, M. Ree, K. H. Lee, and J. C. Jung, Macromolecules, 35, 10119 (2002) https://doi.org/10.1021/ma020639i
  3. S. W. Lee, B. Chae, H. C. Kim, B. Lee, W. Choi, S. B. Kim, T. Chang, and M. Ree, Langmuir, 19, 8735 (2003) https://doi.org/10.1021/la034883u
  4. S. W. Lee, J. Yoon, H. C. Kim, B. Lee, T. Chang, and M. Ree, Macromolecules, 36, 9905 (2003) https://doi.org/10.1021/ma035258z
  5. B. Chae, S. W. Lee, B. Lee, W. Choi, S. B. Kim, Y. M. Jung, J. C. Jung, K. H. Lee, and M. Ree, J. Phys. Chem. B, 107, 11911 (2003) https://doi.org/10.1021/jp034955q
  6. W. S. Kim, D. K. Ahn, and M. W. Kim, Macromol. Chem. Phys., 205, 1932 (2004) https://doi.org/10.1002/macp.200400076
  7. H. Kikuchi, J. A. Logan, and D. Y. Yoon, J. Appl. Phys., 79, 6811 (1996) https://doi.org/10.1063/1.361502
  8. S. W. Lee, T. Chang, and M. Ree, Macromol. Rapid Commun., 22, 941 (2001) https://doi.org/10.1002/1521-3927(20010801)22:12<941::AID-MARC941>3.0.CO;2-Q
  9. S. I. Kim, M. Ree, T. J. Shin, and J. C. Jung, J. Polym. Sci. Part A: Polym. Chem., 37, 2909 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990801)37:15<2909::AID-POLA24>3.0.CO;2-B
  10. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, Jpn. J. Appl. Phys., 31, 2115 (1992)
  11. K. Ichimura, Chem. Rev., 100, 1847 (2000) https://doi.org/10.1021/cr980079e
  12. K. Ichimura, Y. Akita, H. Akiyama, K. Kudo, and Y. Hayashi, Macromolecules, 30, 903 (1997) https://doi.org/10.1021/ma961225q
  13. N. Kawatsuki, T. Kawakami, M. Hayashi, H. Takatsuka, and T. Yamamoto, Chem. Mater., 12, 1549 (2000) https://doi.org/10.1021/cm000066t
  14. J. Choi, J. Lim, and K. Song, Polymer(Korea), 30, 417 (2006)
  15. M. Schadt, H. Seiberle, and A. Shuster, Nature, 381, 212 (1996) https://doi.org/10.1038/381212a0
  16. M. Obi, S. Morino, and K. Ichimura, Macromol. Rapid Commun., 19, 643 (1998) https://doi.org/10.1002/(SICI)1521-3927(19981201)19:12<643::AID-MARC643>3.0.CO;2-A
  17. S. Yamaki, M. Nakagawa, and K. Ichimura, Macromol. Chem. Phys., 202, 354 (2001) https://doi.org/10.1002/1521-3935(20010101)202:2<354::AID-MACP354>3.0.CO;2-D
  18. T. A. Chen, A. K. Y. Jen, and Y. Cai, Macromolecules, 29, 535 (1996) https://doi.org/10.1021/ma9512566
  19. X. O. Li, Z. Zhong, G. Jin, S. H. Lee, and M. H. Lee, Macromol. Res., 14, 257 (2006) https://doi.org/10.1007/BF03219080
  20. M. W. Kim, S. H. Hyun, J. Y. Kong, K. B. Yoon, L. S. Park, and W. S. Kim, J. Ind. Eng. Chem., 12, 267 (2006)
  21. S. Y. Koo, D. H. Lee, H. J. Choi, and K. Y. Choi, J. Appl. Polym. Sci., 61, 1197 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1197::AID-APP15>3.0.CO;2-V
  22. K. Ichimura and N. Oohara, J. Polym. Sci., Polym. Chem. Ed., 25, 3063 (1987) https://doi.org/10.1002/pola.1987.080251111
  23. O. Mitsunobu, Synthesis, 1 (1981) https://doi.org/10.1055/s-1981-29317
  24. T. Matsuura, Y. Hasuda, S. Nishi, and N. Yamada, Macromolecules, 24, 5001 (1991) https://doi.org/10.1021/ma00018a004
  25. A. Zhang, X. Li, C. G. Nah, K. Hwang, and M. H. Lee, J. Polym. Sci. Part A: Polym. Chem., 41, 22 (2003) https://doi.org/10.1002/pola.10543
  26. W. S. Kim, J. W. Lee, Y. W. Kwak, J. K. Lee, Y. T. Park, and S. D. Yoh, Polym. J., 33, 643 (2001) https://doi.org/10.1295/polymj.33.643
  27. G. Kwak, M. W. Kim, D. H. Park, J. Y. Kong, S. H. Hyun, and W. S. Kim, J. Polym. Sci. Part A: Polym. Chem., 46, 5371 (2008) https://doi.org/10.1002/pola.22850