Toluene 용액 캐스팅에 의한 차출용 전도성 Polyaniline-HIPS 블렌드 제조

Preparation of the Conducting Polyaniline-HIPS Blends for Injection Molding by Toluene Solution Casting

  • 이종혁 (수원대학교 자연과학대학 화학과) ;
  • 김은옥 (수원대학교 자연과학대학 화학과)
  • 발행 : 2009.05.25

초록

화학적 산화중합에 의한 Polyaniline Emeraldine salt(PANI-salt)는 도펀트로 존재하는 HCl과 같은 양성 자산으로 인한 금속성 사출금형 부식이 발생한다. 본 연구에서는 비극성 유기용매인 톨루엔, 포펀트와 계면활성제 역할을 하는 dodecylbenzenesulfonic acid(DBSA)를 사용하여 유화 중합법으로 PANI-salt를 합성한 후, 공용매 toluene에서 PANI-salt와 high impact polystyrene(HIPS)를 다양한 비율로 solution-cast 혼합하여 PANI-HIPS 블렌드를 얻었다. PT-IR과 UV-Vis.로 PANI-salt 구조를 확인하였고, PANI-HIPS 블렌드의 모폴로지, 열적 및 전기적 특성을 확인하였다. PANI(50 mL)와 HIPS(1 g)을 혼합하여 사출온도 $103^{\circ}C$, 사출압력 120 psi 하에서 사출한 PANI-HIPS 사출품에서 가장 높은 전기전도도($6.02{\times}10^{-5}\;S/cm$)가 나타났다.

Polyaniline Emeraldine salt (PANI-salt) prepared by the common chemical oxidative polymerization caused the corrosion of the metallic injection mold by protonic acid such as HCl which used as a dopant. PANI-salt, polyaniline doped with dodecylbenzenesulfonic acid (DBSA), was obtained by the emulsion polymerization in nonpolar organic solvent, toluene. In this study DBSA was used as a dopant along with a surfactant. PANI-salt and high impact polystyrene (HIPS) have a good solubility in toluene. Blends with different ratio of PANI and HIPS were prepared through a solution-cast blending. The structure of PANI-salt was characterized by FT-IR and UV-Vis. The morphology, thermal, and electrical properties for PANI-HIPS blends were investigated. Injection molded under $103^{\circ}C$, 120 psi, PANI-HIPS showed the highest electrical conductivity ($6.02{\times}10^{-5}\;S/cm$) after blending PANI (50 mL) and HIPS (1 g).

키워드

참고문헌

  1. T. A. Skotheim, Handbook of Conducting Polymers, Dekker, New York, 1986
  2. H. W. Rhee and C. Y. Kim, Polymer Science and Technology, 2, 149 (1991) https://doi.org/10.1002/pat.1991.220020306
  3. P. K. Kahol, Soilid State Commun., 117, 37 (2001) https://doi.org/10.1016/S0038-1098(00)00408-7
  4. J. E. Frommer and R. R. Chance, Encyclopedia of Polymer Science and Engineering, Wiley, N.Y., Vol 5 (1988)
  5. T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds, Handbook of Conducting Polymers, Marcel Dekker, New York, Vol l and 2 (1988)
  6. W. J. Kim, T. Y. Kim, J. W. Ko, Y. S. Kim, C. M. Park, and K. S. Suh, KIEE, 53, 305 (2004)
  7. H. S. Nalwa, Handbook of Organic Conductive Molecules and Polymers, Wiley N.Y., pp 506-572 (1997)
  8. T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds, Handbook of Conducting Polymers, Marcel Dekker, New York, pp 707-726 (1998)
  9. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasiri, W. Wu, and S. I. Yaniger, Mol. Cryst. Liq. Cryst., 121, 173 (1985) https://doi.org/10.1080/00268948508074857
  10. K. Levon, K. H. Ho, and W. Y. Zheng, Polymer, 36, 2733 (1995) https://doi.org/10.1016/0032-3861(95)93650-B
  11. W. J. Kim, Electrical Properties of Polyaniline/Polystyrene Blends, Master's thesis, The Korea Univ. (2003)
  12. B. H. Lee, Polyaniline Prepared by One-Step Emulsion Polymerization and Properties of its Conducting Blends, Master's thesis, The Korea Univ. (2001)
  13. J. Y. Kim, S. J. Kwon, S. W. Han, and E. R. Kim, Polymer, 27, 549 (2003) https://doi.org/10.1016/0032-3861(86)90241-7
  14. D. S. Kim, Melt Processible Conducting Polyaniline Blends: Mechanical and Electrical Properties, Master's thesis, The Korea Univ. (2003)
  15. Y. Haba, E. Segal, M. Narkis, G. I. Titelman, and A. Siegmann, Synthetic Met., 106, 59 (1999) https://doi.org/10.1016/S0379-6779(99)00100-9
  16. H. J. Lim, K. Y. Kim, and S. J. Lee, Theories and Applications of Chem, Proceedings of KIChE Meetings, 8(2), 4902 (2002)