폴리(에틸렌 테레프탈레이트)(PET) 올리고머의 합성과 생분해 거동

Synthesis and Biodegradation Behavior of Poly(ethylene terephthalate) Oligomers

  • 이찬우 (호서대학교 첨단산업 공학과) ;
  • 정진도 (호서대학교 환경공학과)
  • Lee, Chan-Woo (Department of Innovative Industrial Technology, Hoseo University) ;
  • Chung, Jin-Do (Department of Environmental Engineering, Hoseo University)
  • 발행 : 2009.05.25

초록

Poly(ethylene terephthalate)(PET)의 올리고머인 oligo(ethylene terephthalate)(OET), oligo(ethylene succinate-co-terephthalate)(OEST) 및 oligo(butylene succinate-co-terephthalate)(OBST)를 각각 합성한 후, Pseudomonas cepacia 유래의 lipase PS를 사용하여, 올리고머의 분해실험을 실시, 분해시간에 의한 잔존중량 및 분해생성물의 분석에 의한 생분해기구를 해명함을 목적으로 하였다. OEST와 OBST의 합성에서는 배합 몰비에 대한 조성비의 조절이 가능한 올리고머를 얻을 수 있었으며, 조성비의 상이함에 의해 열적 성질이 현저한 차이가 있음을 확인하였다. 분해실험에서는 OEST, OBST 모두 lipase PS에 의해 분해가 발생되나, terephthalic acid의 조성이 높아질수록 분해능력이 저하됨을 확인하였고, lipase PS는 지방족에 가까운 조성을 가진 polyester를 쉽게 분해시킴을 확인하였다.

Oligo(ethylene terephthalate)(OET), oligo(ethylene succinate-co-terephthalate)(OEST) and oligo(butylene succinate-co-terephthalate)(OBST), which are part of the poly(ethylene terephthalate)(PET) oligomer, were synthesized. Degradation test of oligomers carried out by the presence of lipase PS. There were two objectives in the experiment: first, to measure the weight remaining of the PET oligomer as increasing degradation time, and second to examine the degradation mechanism by analyzing the resulting degraded product. In the synthesis of OEST and OBST, by controlling the feed ratio of both OEST and OBST, we were able to obtain oligomer of different composition ratios. The various composition ratios resulted in oligomer of vastly different thermal properties. We observed that both OEST and OBST were degraded using lipase PS, but as the composition of terephthalic acid was increased, the lipase PS became less effective. We confirmed that the lipase PS easily decomposed polyester of the aliphatic compound.

키워드

참고문헌

  1. Y. Tokiwa and T. Suzuki, Nature, 270, 76 (1977) https://doi.org/10.1038/270076a0
  2. C. W. Lee, J. Korea Soc., 40, 330 (2003)
  3. C. W. Lee, Polymer(Korea), 31, 233 (2007)
  4. P. A. Holmes, Phys. Technol., 16, 32 (1985) https://doi.org/10.1088/0305-4624/16/1/305
  5. Y. Doi, M. Kunioka, Y. Nakamura, and K. Soga, Macromolecules, 21, 2722 (1988) https://doi.org/10.1021/ma00187a012
  6. N. Koyama and Y. Doi, Polymer, 38, 1589 (1997) https://doi.org/10.1016/S0032-3861(96)00685-4
  7. L. Finelli, M. Scandola, and P. Sadocco, Macromol. Chem. Phys., 199, 695 (1998) https://doi.org/10.1002/(SICI)1521-3935(19980401)199:4<695::AID-MACP695>3.0.CO;2-E
  8. M. Maekawa, R. Pearce, R. H. Marchessault, and R. S. J. Manley, Polymer, 40, 1501 (1999) https://doi.org/10.1016/S0032-3861(98)00359-0
  9. Y. Furuhashi, H. Yamane, Y. Kimura, and N. Yoshie, Fiber Prepr. Jpn, 60, 51 (2005)
  10. K. Shiraki, H. Tsuji, and Y. Ikada, Polym. Prepr. Jpn, 39 584 (1990)
  11. K. Fukushima, K. Sogo, S. Miura, and Y. Kimura, Macromol. Biosci., 4, 1021 (2004) https://doi.org/10.1002/mabi.200400080
  12. N. Yui, P. T. Dijkstra, and J. Feijen, Makromol. Chem., 191, 481 (1990) https://doi.org/10.1002/macp.1990.021910303
  13. J. D. Schang, Y. Li, and M. Cygler, Structure, 5, 187 (1997) https://doi.org/10.1016/S0969-2126(97)00178-0
  14. T. M. Ovitt and G. W. Coates, J. Am. Chem. Soc., 127, 1316 (2002)
  15. A. M. Kenwright, S. K. Peace, R. W. Richards, A. Bunn, and W. A. MacDonald, Polymer, 40, 2035 (1999) https://doi.org/10.1016/S0032-3861(98)00433-9