CuPc: $F_4$-TCNQ 정공 수송층이 도입된 P-i-n형 유기 박막 태양전지의 성능 특성 연구

Performance Characteristics of p-i-n Type Organic Thin-film Photovoltaic Cell with CuPc: $F_4$-TCNQ Hole Transport Layer

  • Park, So-Hyun (Department of Chemical Engineering, Pusan National University) ;
  • Kang, Hak-Su (Department of Chemical Engineering, Pusan National University) ;
  • Senthilkumar, Natarajan (Department of Chemical Engineering, Pusan National University) ;
  • Park, Dae-Won (Department of Chemical Engineering, Pusan National University) ;
  • Choe, Young-Son (Department of Chemical Engineering, Pusan National University)
  • 발행 : 2009.05.25

초록

박막형 유기 태양전지의 성능 향상을 위하여 정공 수송층인 CuPc 층에 강한 p형 유기 반도체인 $F_4$-TCNQ을 도핑하여 ITO/PEDOT:PSS/CuPc: $F_4$-TCNQ(5wt%)/CuPc:C60 (blending ratio 1 : 1)/C60/BCP/LiF/Al의 이종 접합 구조를 가지는 P-i-n형 유기 박막형 태양전지 소자를 진공증착 장비를 이용하여 제조한 후, 유기 태양전지의 전류 밀도-전압(J-V) 특성, 단락 전류($J_{sc}$), 개방 전압($V_{oc}$), 충진 인자(fill factor: FF), 에너지 전환 효율(${\eta}_e$) 등을 측정하고 계산하여 성능 굉가를 수행하였다. CuPc 층에 $F_4$-TCNQ을 도핑함으로써 에너지 흡수 스펙트럼에서 흡수강도가 증가하였으며, $F_4$-TCNQ가 도핑된 CuPc 박막에서 $F_4$-TCNQ 유기 분자의 분산성 향상, 박막의 표면 균일성, 주입 전류(injection currents) 향상 효과등에 의해서 제조된 p-i-n형 유기 박막 태양전지의 성능이 향상되는 것으로 확인되었다. 제조된 유기 태양전지의 에너지 전환 효율(${\eta}_e$)은 0.15%로 실리콘 태양전지와 비교해서 아직도 성능 향상을 위한 많은 노력이 필요함을 보여 준다.

We have investigated the effect of strong p-type organic semiconductor $F_4$-TCNQ-doped CuPc hole transport layer on the performance of p-i-n type bulk heterojunction photovoltaic device with ITO/PEDOT:PSS/CuPc: $F_4$-TCNQ(5 wt%)/CuPc:C60(blending ratio l:l)/C60/BCP/LiF/Al, architecture fabricated via vacuum deposition process, and have evaluated the J-V characteristics, short-circuit current ($J_{sc}$), open-circuit voltage($V_{oc}$), fill factor(FF), and power conversion efficiency(${\eta}_e$) of the device. By doping $F_4$-TCNQ into CuPc hole transport layer, increased absorption intensity in absorption spectra, uniform dispersion of organic molecules in the layer, surface uniformity of the layer, and enhanced injection currents improved the current photovoltaic device with power conversion efficiency(${\eta}_e$) of 0.16%, which is still low value compared to silicone solar cell indicating that many efforts should be made to improve organic photovoltaic devices.

키워드

참고문헌

  1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987) https://doi.org/10.1063/1.98799
  2. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E.Thompson, and S. R. Forrest, Nature(London), 395, 151 (1998) https://doi.org/10.1038/25954
  3. B. P. Rand, J. Xue, S. Uchida, and S. R. Forrest, Appl. Phys. Lett., 98, 124902 (2005)
  4. S. E. Shaheen, C. J. Brabec, and N. S. Sariciftci, Appl. Phys. Lett., 78, 841 (2001) https://doi.org/10.1063/1.1345834
  5. S. M. Schultes, P. Sullivan, S. Heutz, B. M. Sanderson, and T. S. Jones, Mater. Sci. Eng. C, 25, 858 (2005) https://doi.org/10.1016/j.msec.2005.06.039
  6. J. Drechsel, B. Mănnig, F. Kozlowski, D. Gebeyehu, A. Werner, M. Koch, K. Leo, and M. Pfeiffer, Thin Solid Films, 451, 515 (2004) https://doi.org/10.1016/j.tsf.2003.11.044
  7. D. Gebeyehu, B. Maennig, J. Drechsel, K. Leo, and M. Pfeiffer, Sol. Energy Mater. Sol. Cells, 79, 81 (2003) https://doi.org/10.1016/S0927-0248(02)00369-0
  8. V. Tripathi, D. Datta, G. S. Samal, A. Awasthi, and S. Kumar, J. Non-Crystalline Solids, 354, 2901 (2008) https://doi.org/10.1016/j.jnoncrysol.2007.10.098
  9. J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, Appl. Phys. Lett., 98, 124903 (2005)
  10. G. Hadziioannou and P. F. van Hutten, Editors., Semiconducting Polymers: Chemistry, Physics and Engineering, WILEYVCHVerlag GmbH, Weinheim, Federal Republic of Germany, 2000
  11. G. Yu, J. Gao, J. C. Hummelene, F. Wudl, and A. J. Heeger, Science, 270, 1789 (1995) https://doi.org/10.1126/science.270.5243.1789
  12. P. Peumans, V. Bulović, and S. R. Forrest, Appl. Phys. Lett., 76, 2650 (2000) https://doi.org/10.1063/1.126433
  13. J. H. Park and J. Y. Soul, Korean Chem. Eng. Res., 42, 269 (2004)
  14. C. J. Brabec, J. A. Hauch, P. Schilinsky, and C. Waldauf, MRS Bullletin, 30, 50 (2005) https://doi.org/10.1557/mrs2005.10
  15. M. A. Green, Silicon Solar Cells: Advanced Principles and Practice, Bridge Printery, Sidney, 1995
  16. M. I. Hoffert et al., Science, 298, 981 (2002) https://doi.org/10.1126/science.1072357
  17. A. Goetzberger, C. Hebling, and H. -W. Schock, Mater. Sci. Eng. R, 40, 1 (2003) https://doi.org/10.1016/S0927-796X(02)00092-X
  18. T. Fromherz, F. Padinger, D. Gebeyehu, C. Brabec, J. C. Hummelen, and N. S. Sariciftci, Sol. Energy Mater. Sol. Cells, 63, 61 (2000) https://doi.org/10.1016/S0927-0248(00)00020-9
  19. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, Science, 317, 222 (2007) https://doi.org/10.1126/science.1141711
  20. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater., 11,15 (2001) https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
  21. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys., 93, 3693 (2003) https://doi.org/10.1063/1.1534621
  22. B. A. Gregg, J. Phys. Chem. B, 107, 4688 (2003) https://doi.org/10.1021/jp022507x
  23. J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett., 85, 5757 (2004) https://doi.org/10.1063/1.1829776
  24. J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, Adv. Mater.(Weinheim, Ger.), 17, 66 (2005) https://doi.org/10.1002/adma.200400617
  25. F. Padinger, R. Rittberger, and N. S. Sariciftci, Adv. Funct. Mater., 13, 85 (2003) https://doi.org/10.1002/adfm.200390011
  26. J. J. Dittmer, R. Lazzaroni, P. Leclere, P. Moretti, M. Granstrom, K. Petritsch, E. A. Marseglia, R. H. Friend, J. L. Bredas, H. Rost, and A. B. Holmes, Sol. Energy Mater. Sol. Cells, 61, 53 (2000) https://doi.org/10.1016/S0927-0248(99)00096-3
  27. W. Geens, T. Aernouts, J. Poortmans, and G. Hadziioannou, Thin Solid Films, 438, 403 (2002) https://doi.org/10.1016/S0040-6090(03)00788-0
  28. W. Geens, S. E. Shaheen, B. Wessling, C. J. Brabec, J. Poortmans, and N. S. Sariciftci, Org. Electron., 3, 105 (2002) https://doi.org/10.1016/S1566-1199(02)00039-3
  29. T. Martens, J. D'Haen, T. Munters, Z. Beelen, L. Goris, J. Manca, M. D'Olieslaeger, D. Vanderzande, L. De Schepper, and R. Andriessen, Synth. Met., 138, 243 (2003) https://doi.org/10.1016/S0379-6779(02)01311-5
  30. M. Drees, K. Premaratne, W. Graupner, J. R. Heflin, R. M. Davis, D. Marciu, and M. Miller, Appl. Phys. Lett., 81, 4607 (2002) https://doi.org/10.1063/1.1522830
  31. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science, 270, 1789 (1995) https://doi.org/10.1126/science.270.5243.1789
  32. P. Peumans and S. R. Forrest, Appl. Phys. Lett., 29, 126 (2001) https://doi.org/10.1063/1.88966
  33. P. Peumans, V. Bulovic, and S. R. Forrest, Appl. Phys. Lett., 76, 2650 (2000) https://doi.org/10.1063/1.126433
  34. M. Vogel, S. Doka, C. Breyer, M. C. Lux-Steiner, and K. Fostiropoulos, Appl. Phys. Lett., 89, 163501 (2006) https://doi.org/10.1063/1.2362624
  35. J. H. SchOn, Ch. Kloc, E. Bucher, and B. Batlogg, Nature (London), 403, 408 (2000) https://doi.org/10.1038/35000172
  36. J. Y. Lee and H. K. Jang, J. Appl. Phys., 88, 183502 (2006)
  37. Y. Y. Yuan, S. Han, D. Grozea, and Z. H. Lu, Appl. Phys. Lett., 88, 093603 (2006)
  38. L. Lozzi, S. Santucci, and S. La Rosa, Appl. Phys. Lett., 88, 133505 (2006) https://doi.org/10.1063/1.2186742
  39. S. G. Noh, S. H. Kim, J. J. Yang, C. H Lee, and J. Y. Kim, J. Korean. Phys. Soc., 53, 1551 (2008) https://doi.org/10.3938/jkps.53.1551