DOI QR코드

DOI QR Code

Short-term Electrical Load Forecasting Using Neuro-Fuzzy Model with Error Compensation

  • Wang, Bo-Hyeun (Department of Electrical Engineering, Kangnung-Wonju National University)
  • 투고 : 2009.08.17
  • 심사 : 2009.11.30
  • 발행 : 2009.12.25

초록

This paper proposes a method to improve the accuracy of a short-term electrical load forecasting (STLF) system based on neuro-fuzzy models. The proposed method compensates load forecasts based on the error obtained during the previous prediction. The basic idea behind this approach is that the error of the current prediction is highly correlated with that of the previous prediction. This simple compensation scheme using error information drastically improves the performance of the STLF based on neuro-fuzzy models. The viability of the proposed method is demonstrated through the simulation studies performed on the load data collected by Korea Electric Power Corporation (KEPCO) in 1996 and 1997.

키워드

참고문헌

  1. W. R. Christiaanse, 'Short-term load forecasting using general exponential smoothing,' IEEE Trans. Power Apparatus and Systems, vol. 90, pp. 900 – 910, 1971 https://doi.org/10.1109/TPAS.1971.293123
  2. M. T. Hagan and S. M. Behr, 'The time series approach to short-term load forecast,' IEEE Trans. Power Apparatus and Systems, vol. PAS-2, no. 3, pp. 785-791, 1987 https://doi.org/10.1109/TPWRS.1987.4335210
  3. S. Rahman and O. Hazim, 'A generalized knowledge-based short-term load forecasting technique,' IEEE Trans. Power Syst., vol. PWRS-8, no. 2, pp. 508-514, 1993 https://doi.org/10.1109/59.260833
  4. D. C. Park, M. EL-Sharkawi, R. Marks, A. Atlas, and M. Damborg, 'Electrical load forecasting using an artificial neural network,' IEEE Trans. Power Syst., vol. 6, no. 2, pp. 442-449, May 1991 https://doi.org/10.1109/59.76685
  5. T. W. Chow and C. T. Leung, 'Neural network based short-term load forecasting using weather compensation,' IEEE Trans. Power Syst., vol. 11, no. 4, pp. 1736-1742, Nov. 1996 https://doi.org/10.1109/59.544636
  6. A. Khotanzad, R. C. Hwang, A. Abaye, and D. Maratukulam, 'An adaptive modular artificial neural network hourly load forecaster and its implementation at electric utilities,' IEEE Trans. Power Syst., vol. 10, no. 3, pp. 1716-1722, Aug. 1995 https://doi.org/10.1109/59.466468
  7. K. H. Kim, J. K. Park, K. J. Hwang, and S. H. Kim, "Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems," IEEE Trans. Power Syst., vol. 10, no. 3, pp. 1534-1539, Aug. 1995 https://doi.org/10.1109/59.466492
  8. A. G. Bakirtzis, J. B. Theocharis, S. J. Kiartzis, and K. J. Satsios, 'Short-term load forecasting using fuzzy neural networks,' IEEE Trans. Power Syst., vol. 10, no. 3, pp. 1518-1524, Aug. 1995 https://doi.org/10.1109/59.466494
  9. H. Mori and H. Kobayashi, 'Optimal fuzzy inference for short-term load forecasting,' IEEE Trans. Power Syst., vol. 11, no. 1, pp. 390-396, Feb. 1996 https://doi.org/10.1109/59.486123
  10. Y. J. Park and B. H. Wang, 'Neuro-Fuzzy Model based Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting,' Journal of Korean Fuzzy Logic and Intelligent Systems, vol. 14, no. 5, pp. 533-538, 2004 https://doi.org/10.5391/JKIIS.2004.14.5.533
  11. H. J. Shim and B. H. Wang, 'Reliability Computation of Neuro-fuzzy Model based Short Term Electrical Load Forecasting,' Journal of Korean Institute of Electrical Engineering, vol. 54, no. 10, pp. 467-474, 2005
  12. C. T. Lin and C. S. G. Lee, 'Neural-network-based-fuzzy logic control and decision system,' IEEE Trans. Comput., vol. 40, pp. 1320-1336, 1991 https://doi.org/10.1109/12.106218
  13. J. S. R. Jang, 'ANFIS: Adaptive-network-based fuzzy inference system,' IEEE Trans. Syst., Man, Cybern., vol. 23, pp 665-684, 1995 https://doi.org/10.1109/21.256541
  14. C. T. Sun, 'Rule-based structure identification in an adaptive-network-based fuzzy inference system,' IEEE Trans. Fuzzy Systems, vol. 2, pp. 7-31, 1994 https://doi.org/10.1109/91.273127
  15. M. Sugeno and T. Yasukawa, 'A fuzzy-logic-based approach to qualitative modeling,' IEEE Trans. Fuzzy Systems, vol. 1, pp. 7-31, 1993 https://doi.org/10.1109/TFUZZ.1993.390281
  16. M. Kubat, 'Decision trees can initialize radial basis function networks,' IEEE Trans. Neural Networks, vol. 9, no. 5, pp. 813-821, Sept. 1998 https://doi.org/10.1109/72.712154
  17. M. Sugeno and T. Yasukawa, 'A fuzzy-logic-based approach to qualitative modeling,' IEEE Trans. Fuzzy Systems, vol. 1, pp. 7-31, 1993 https://doi.org/10.1109/TFUZZ.1993.390281
  18. J. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981
  19. J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, 1993
  20. P. Wasserman, Advanced Methods in Neural Computing, Van Nostrand Reinhold, 1993
  21. H. Yoo and R. L. Pimmel, 'Short-term Load Forecasting using a Self-supervised Adaptive Neural Network,' IEEE Trans. Power Syst., vol. 14, no. 2, pp. 779-784, May 1999 https://doi.org/10.1109/59.761912

피인용 문헌

  1. An Ultrasonic Multi-Beam Concentration Meter with a Neuro-Fuzzy Algorithm for Water Treatment Plants vol.15, pp.10, 2015, https://doi.org/10.3390/s151026961