• Title/Summary/Keyword: Flowering plants

Search Result 554, Processing Time 0.028 seconds

Relationship between the Time and Duration of Flowering in Several Woody Plants in Springtime

  • Min, Byeong-Mee;Lee, Ji-Sook;Jeong, Sang-Jin
    • Journal of Ecology and Environment
    • /
    • v.31 no.2
    • /
    • pp.139-146
    • /
    • 2008
  • To clarify the relationship between the timing and the duration of flowering among populations, plants, and individual flowers, the dates of flower budding, flowering and deflowering were monitored for ten woody species from March 1 to June 30, in 2005, 2006 and 2007, in temperate deciduous forests at three sites of Namsan, and individual plants from seven woody species were monitored from March 1 to May 31, in 2006. Total durations of flower budding, flowering, and deflowering varied among the plant species. Three durations of these phenological stages of Stephanandra incisa were the longest (74 days, 109 days, and 101 days, respectively), and those of Prunus serrulata var. spontanea were the shortest (7 days, 7 days, and 4 days, respectively). For each species, phenological durations varied among years but were similar among the study sites in the same year. There was no relationship between flowering time and flowering duration on the population level. On the plant level, the duration of flower budding was over 11 days in all specie; S. incisa had the longest duration (73.3 days), and that of Styrax japonica was long as well (29.0 days), while that of Prunus leveilleana was the shortest (11.3 days). The longer the mean flower budding duration, the greater the difference among the plants within a species. The flowering duration of for S. incisa was 92.2 days, while that of Forsythia koreana was 27.2 days. The flowering durations of all other species were $10{\sim}20$ days. The deflowering duration was 92.0 days in S. incisa and <15 days in all other species. Differences among the plants in deflowering duration were smaller than those of the other phenological stages. In the species that flowered in April, the correlation coefficient between the flowering duration and the first flowering date was negative and significant. However, in the species that flowered in May, the correlation between flowering duration and the first flowering date was not significant. For individual plants of all species except for S. alnifolia, the earlier the flowering time, the longer the flowering duration. Differences between flowering time and flowering duration across years were significant in six species.

Changes of Flowering Time in the Weather Flora in Susan Using the Time Series Analysis (시계열 분석을 이용한 부산지역 계절식물의 개화시기 변화)

  • Choi, Chul-Mann;Moon, Sung-Gi
    • Journal of Environmental Science International
    • /
    • v.18 no.4
    • /
    • pp.369-374
    • /
    • 2009
  • To examine the trend on the flowering time in some weather flora including Prunus serrulata var. spontanea, Cosmos bipinnatus, and Robinia pseudo-acacia in Busan, the changes in time series and rate of flowering time of plants were analyzed using the method of time series analysis. According to the correlation between the flowering time and the temperature, changing pattern of flowering time was very similar to the pattern of the temperature, and change rate was gradually risen up as time goes on. Especially, the change rate of flowering time in C. bipinnatus was 0.487 day/year and showed the highest value. In flowering date in 2007, the difference was one day between measurement value and prediction value in C. bipinnatus and R. pseudo-acacia, whereas the difference was 8 days in P. mume showing great difference compared to other plants. Flowering time was highly related with temperature of February and March in the weather flora except for P. mume, R. pseudo-acacia and C. bipinnatus. In most plants, flowering time was highly related with a daily average temperature. However, the correlation between flowering time and a daily minimum temperature was the highest in Rhododendron mucronulatum and P. persica, otherwise the correlation between flowering time and a daily maximum temperature was the highest in Pyrus sp.

Studies on the Variation of Flowering Date in Korean Ginseng Plants (인삼의 개화기변이에 관한 연구)

  • Choe, Gwang-Tae;Lee, Jong-Hwa;Cheon, Seong-Ryong
    • Journal of Ginseng Research
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 1979
  • Present studies were carried out to clarify the variation of flowering date in the variants of Korean ginseng Plants. In general, the variation of flowering date of violet-stem variant was found to be mere variable as compared with that of yellow-berry variant. And flowers began to bloom earlier in yellow-berry variant than in violet-stem variant. In violet-stem variant as well as in yellow-berry variant, the flowering date of 5-year old plants was earlier than that of 3- and 4-year old plants. As for the flowering date according to the different lines, the third line was earlier than the first or the fifth line.

  • PDF

Consequence of Floral Herbivory in Vicia cracca (Leguminosae)

  • Gang, Hye-Sun
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.55-63
    • /
    • 1998
  • The effects of inflorescence herbivory and flowering time on plant architecture and reproductive yields were examined with a perennial herbacious species, Vicia cracca, occurring in Natick, Massachusetts, USA. Natural herbivory on inflorescences was observed among the total of 157 plants during a growing season. Vegetative and reproductive characters were measured in the field as well as in the lab depending on the characters. Approximately 64% of the plants were subjected to herbivory on inflorescences. Plants were classified into three groups; unbrowsed plants, partially browsed, and totally browsed plants, according to the level of herbivory on inflorescences of each plant. Plants were also categorized by their flowering time such as early vs late flowering plants. Herbivores tended to favor inflorescences on rather small plants, resulting in a pattern of totally contact or partially intact inflorescences on taller plants. The mean number of stems, which was assumed to be a direct result of severe herbivory in this population, differed among herbivory groups. There also was a tendency that plants flowering late in the season had more nodes with more leaves, suggesting that herbivory on stem tips early in the season before flowering might have induced growth of side branches or branchlets along the main stems. Comparison between unbrowsed and partially browsed plants showed that the latter compensated for browsing in terms of numbers of inflorescences, fruits, seeds and seed size (weight), though they did not compensate in flower number. The probability of fruit production (presence vs absence of fruits) and seed weight declined toward the end of the season. These results suggest that resources are deficient at the end of the season. Almost complete reproductive failure in totally browsed plants is attributed to the destruction of inflorescence display and the disadvantage of small vegetative size of those plants. After all, in this population, a moderate level of herbivory on inflorescences did not reduce the maternal fitness of the plants. However, severe herbivory on inflorescences resulted in antagonistic interactions between plants and herbivores.

  • PDF

A study on the Choice, Arrangement and Operation of Plantation for Development of Tourism Botanical Garden (관광식물원 조성을 위한 식재수종의 선택과 배치 및 운영에 관한 연구)

  • 허성수;김종현;한광희;신언동;강지민
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.4
    • /
    • pp.36-58
    • /
    • 1999
  • We designed the model picture of Tourism Botanical Garden, as a kind of theme park, in which we could enjoy flowers all the year round and the glorious tints of its autumn foliage. It would be very important to decide what kinds of trees should be planted and where to plant them. We selected the appropriate flowers and trees according to their value of appreciation and flowering time and the grand view around there and the weather conditions of the central region. We selected perennial plants as native plants, according to their color, flowering time and for the convenience of maintenance. And we selected some kinds of culture plants to show the seasonal change and diversity, according to their color and flowering time. We adopted the roof-tile pattern of Pakjae Kingdom to design the basic model of the garden, and the area was divided into eight sections. Six of them were divided again into four small planting areas from the outside respectively, according to the kinds of trees; pine-tree area, native flowering plant area, flowering tree area and flowering shrub area. The last two sections are by a lake, so they could make a beautiful landscape of waterfront. For the effective and economic operation of the garden, some kinds of flower trees and shrubs, which are little damaged by blight and are needless to prune, were selected. And perennial plants were also selected, because we don't have to change them into other plants, so we could cut down the expenses. As for the culture plants, they could be easily replaced with other culture plants in the flowering time, to show seasonal change and the harmony with the scenery around the garden.

  • PDF

Relationship between the sexual and the vegetative organs in a Polygonatum humile (Liliaceae) population in a temperate forest gap

  • Min, Byeong-Mee
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.256-264
    • /
    • 2017
  • Background: The aim of this study was to clarify the relationship between the sexual reproduction and the resource allocation in a natural Polygonatum humile population grown in a temperate mixed forest gap. For this aim, the plant size, the node which flower was formed, the fruiting rate, and the dry weight of each organ were monitored from June 2014 to August 2015. Results: Firstly, in 3-13-leaf plants, plants with leaves ${\leq}8$ did not have flowers and in plants with over 9 leaves the flowering rate increased with the number of leaves. Among plants with the same number of leaves, the total leaf area and dry weight of flowering plants were larger than those of non-flowering plants. The minimum leaf area and dry weight of flowering plants were $100cm^2$ and 200 mg, respectively. Secondary, the flowers were formed at the 3rd~8th nodes, and the flowering rate was highest at the 5th node. Thirdly, cumulative values of leaf properties from the last leaf (the top leaf on a stem) to the same leaf rank were greater in a plant with a reproductive organ than in a plant without a reproductive organ. Fourthly, fruit set was 6.1% and faithful fruit was 2.6% of total flowers. Biomasses of new rhizomes produced per milligram dry weight of leaf were $0.397{\pm}190mg$ in plants that set fruit and $0.520{\pm}0.263mg$ in plants that did not, and the difference between the 2 plant groups was significant at the 0.1% level. Conclusions: P. humile showed that the 1st flower formed on the 3rd node from the shoot's base. And P. humile showed the minimum plant size needed in fruiting, and fruiting restricted the growth of new rhizomes. However, the fruiting rate was very low. Thus, it was thought that the low fruiting rate caused more energy to invest in the rhizomes, leading to a longer rhizome. A longer rhizome was thought to be more advantageous than a short one to avoid the shading.

Brassinosteroids-mediated regulation of ABI3 is involved in high-temperature induced early flowering in plants

  • Hong, Jeongeui;Sung, Jwakyung;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • v.45 no.2
    • /
    • pp.83-89
    • /
    • 2018
  • The interplay of plant hormones is one of the essential mechanisms for plant growth and development. A recent study reported that Brassinosteroids (BR) and ABSCISIC ACID (ABA) interact antagonistically in early seedling developments through the BR-mediated epigenetic repression of ABSCISIC ACID-INSENSITIVE 3 (ABI3). However, the other physiological roles of the BR-mediated regulation of ABI3 and ABA responses beyond early seedling developments remain largely unknown. Here, we showed that the activation of BR signaling by high temperatures promotes flowering time through the suppression of ABI3 expressions. Elevated ambient temperature induced early flowering in wild type Col-0 plants, but not in BR-defective bri1-116 mutant plants. Conversely, a hyper BR biosynthetic dwf4-D mutant displayed more sensitive thermomorphic long shoot elongation and early flowering. Both expression patterns and physiological responses supported the biological roles of ABI3 in the regulation of floral transition and reproduction under high temperature conditions. Finally, we confirmed that the lowered expressions of the transcript and protein levels of ABI3 brought on by elevated temperature were correlated with warmth-induced early flowering phenotypes. In conclusion, our data suggest that the BR- and warmth-mediated regulation of ABI3 are important in thermomorphic reproductive phase transitions in plants.

Studies on the Effect of 2-Chloroethylphosphonic Acid (Ethephon) on the Floral Induction in Photoperiodic Plants (광주기식물의 개화유도에 미치는 2-Chloroethylphosphonic Acid(Ethephon)의 효과에 관한 연구 I. Ethephon에 의한 Lemna perpusilla 6746 개화억제)

  • 맹주선
    • Journal of Plant Biology
    • /
    • v.20 no.2
    • /
    • pp.77-82
    • /
    • 1977
  • The inhibiotory effect of ethphon on the flowering in Lemna perpusilla 6746 was shown to be related to sucrose concentrations and dilution factors of Hutner's medium. When grown in 1/10-strength Hutner's medium under 10(14) cycles, the plants have been completely inhibited in the floral induction by ethephon (>5ppm) in the presence of sucrose (>20 mM) in the meduim. However, in a less diluted Hutner's medium (1/2-strength), the inhibition of flowering by ethephon was observed to be partially diminished by sucrose at a high concentration (30mM), while a low concentration of sucrose enhanced the inhibitory effect of ethephon in flowering. As inductive dark periodswere extended, the effects of both compounds were partially nullified. Since no significant amount of ethylene possibly released in ethephon decomposition in the medium was detected, the inhibitory effect of ethephon in flowering was postulated to be exerted only through ethylene production within the plants. Plants were incubated in 10 ppm ethephon-containing medium during either dark or light periods, singly or periodically. The most effective single treatment with ethephon was observed during the 4th dark period, when formation of floral stimulus was assumed to be completed beyond a critical level. This postulation can be partially supported by a fact that the plants should be exposed to at least more than four consecutive 10(14) cycles for flowering.

  • PDF

Overriding Photoperiod Sensitivity of Flowering Time by Constitutive Expression of a MADS Box Gene

  • N, Gynheung-A
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1996.07a
    • /
    • pp.4-9
    • /
    • 1996
  • The majority of plants sense environmental signals, such as day length or temperature, to select their transition timing from vegetative growth t flowering. Here, we report the identification of a regulatory gene, OsMADS1, that controls the photoperiod sensitivity of flowering time. Constitutive expression of OsMADS1 in a long-day flowering plant, Nicotiana sylvestris, resulted in flowering in both short-day long-day conditions. Similarly, ectopic expression of the gene in a short-day flowering plant, N. tabacum cv. Maryland Mammoth, also induced flowering regardless of the day length. The transition time was dependent on the level of the OsMADS1 transcript in transgenic plants. These suggest that OsMADS1 is a key regulatory factor that determines the transition from shoot apex to floral meristem and that it can be used for controlling flowering time in a variety of plant species.

  • PDF

Monitoring the phenology of Forsythia velutina, an endemic plant of Korea

  • Sung, Jung-Won;Kim, Geun-Ho;Lee, Kyeong-Cheol;Shim, Yun-Jin;Kang, Shin-Gu
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.4
    • /
    • pp.355-363
    • /
    • 2021
  • Background and objective: This study was conducted on Forsythia velutina, a special plant, in Gyeongsangnam-do Arboretum under the Gyeongsangnam-do Forest Environment Research Institute, which is located in the southern part of Korea. Methods: The research aimed to analyze the flowering characteristics of the plant by calculating the optimal temperature and humidity according to the flowering time and flowering period for 8 years from 2010 to 2017 in order to provide basic data for bioclimate studies of endemic plants. Results: It was observed that the Forsythia velutina showed a life cycle from mid-March and to mid-November. Average growth period was 243 (± 6.5) days. In testing the reliability of a single variable according to the meteorological factors, the Cronbach's Alpha was 0.701, which indicates that the findings were relatively reliable. The average date of flowering was March 16 (SD = 5.8) and the average date on which blossoms fall was March 29 (SD = 5.2). A substantial difference in flowering period was observed from year to year 11 to 23 days, with an average of 16 days (± 4.7). The temperature and humidity in February to March, which affect the flowering, were 2.9-5.5℃, and 66.5-73.0%, respectively, and showed differences every year. Conclusion: The correlation between flowering time and meteorological factors was positive, and the highest daily temperature and average daily temperature had the highest significance. When establishing basic data on plant species for the conservation of endemic plants, the changes in life cycle events and weather conditions are identified. It is believed that it will be helpful in establishing a conservation strategy for the plant species in the future.