DOI QR코드

DOI QR Code

Power Amplifiers and Transmitters for Next Generation Mobile Handsets

  • Choi, Jin-Sung (Electronic and Electrical Engineering Department, Pohang University of Science and Technology(POSTECH)) ;
  • Kang, Dae-Hyun (Electronic and Electrical Engineering Department, Pohang University of Science and Technology(POSTECH)) ;
  • Kim, Dong-Su (Electronic and Electrical Engineering Department, Pohang University of Science and Technology(POSTECH)) ;
  • Park, Jung-Min (Electronic and Electrical Engineering Department, Pohang University of Science and Technology(POSTECH)) ;
  • Jin, Bo-Shi (Electronic and Electrical Engineering Department, Pohang University of Science and Technology(POSTECH)) ;
  • Kim, Bum-Man (Electronic and Electrical Engineering Department, Pohang University of Science and Technology(POSTECH))
  • Received : 2009.08.01
  • Published : 2009.12.30

Abstract

As a wireless handset deals with multiple application standards concurrently, RF transmitters and power amplifiers are required to be more power efficient and reconfigurable. In this paper, we review the recent advances in the design of the power amplifiers and transmitters. Then, the systematic design approaches to improve the performance with the digital baseband signal processing are introduced for the next generation mobile handset.

Keywords

References

  1. J. Deng, P. S. Gudem, L. E. Larson, and P. M. Asbeck, "A high average-efficiency SiGe HBT power amplifier for WCDMA handset applications," IEEE Trans. Microw. Theory Tech., Vol.53, No.2, pp. 529–537, Feb., 2005 https://doi.org/10.1109/TMTT.2004.840629
  2. J. Deng, P. S. Gudem, L. E. Larson, D. F. Kimball, and P. M. Asbeck, "A SiGe PA with dual dynamic bias control and memoryless digital predistortion for WCDMA handset applications," IEEE J. Solid- State Circuits, Vol.41, No.5, pp.1210–1221, May 2006
  3. P. Reynaert, and M. Steyaert, "A 1.75-GHz polar modulated CMOS RF power amplifier for GSMEDGE," IEEE J. Solid-State Circuits, Vol.40, No. 12, pp.2598–2608, Dec., 2005
  4. D. Yu, Y. Kim, K. Han, J. Shin, and B. Kim, "Fully integrated Doherty power amplifiers for 5GHz Wirelss-LANs," in Radio Frequency Integrated Circuits (RFIC) Symp., June 2006, pp.177–180
  5. J. Kang, J. Yoon, K. Min, D. Yu, J. Nam, Y. Yang, and B. Kim, "A highly linear and efficient differential CMOS power amplifier with harmonic control," IEEE J. Solid-State Circuits, Vol.41, No.6, pp. 1314–1322, June 2006 https://doi.org/10.1109/JSSC.2006.874276
  6. S. Yamanouchi, Y. Aoki, K. Kunihiro, T. Hirayama, T. Miyazaki, and H. Hida, "Analysis and Design of a Dynamic Predistorter for WCDMA Handset Power Amplifiers," IEEE Trans. Microw. Theory Tech., vol. 55, no. 3, pp. 493–503, Mar. 2007 https://doi.org/10.1109/TMTT.2006.890515
  7. J. Nam, and B. Kim, "The Doherty power amplifier with on-chip dynamic bias control circuit for handset application," IEEE Trans. Microw. Theory Tech., Vol.55, No.4, pp.633–642, Apr., 2007 https://doi.org/10.1109/TMTT.2007.892800
  8. B. Sahu, and G. A. Rincon-Mora, "A high efficiency WCDMA RF power amplifier with adaptive, dualmode buck-boost supply and bias-current control," IEEE Microw. Compon. Lett., Vol.17, No.3, pp.238–240, Mar., 2007 https://doi.org/10.1109/LMWC.2006.890505
  9. K. Yamamoto, T. Moriwaki, H. Otsuka, N. Ogawa, K. Maemura, T. Shimura, "A CDMA InGaP/GaAs-HBT MMIC power amplifier module operating with a low reference voltage of 2.4V," IEEE J. Solid-State Circuits, Vol.42, No.6, pp.1282–1290, June 2007 https://doi.org/10.1109/JSSC.2007.897120
  10. F. Wang, D. F. Kimball, D. Y. Lie, P. M. Asbeck, and L. E. Larson, "A monolithic high-efficiency 2.4-GHz 20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier," IEEE J. Solid-State Circuits, Vol.42, No.6, pp.1271–1281, June 2007 https://doi.org/10.1109/JSSC.2007.897170
  11. D. H. Lee, C. Park, J. Han, Y. Kim, S. Hong, C. Lee, and J. Laskar, "A load-shared CMOS power amplifier with efficiency boosting at low power mode for polar transmitters," IEEE Trans. Microw. Theory Tech., Vol.56, No.7, pp.1565–1574, July 2008 https://doi.org/10.1109/TMTT.2008.925220
  12. A. Tombak, R. J. Baeten, J. D. Jorgenson, and D. C. Dening, "Integration of a cellular handset power amplifier and a DC/DC converter in a Silicon-On-Insulator (SOI) technology," in Radio Frequency Integrated Circuits (RFIC) Symp., June 2008, pp. 413–416 https://doi.org/10.1109/RFIC.2008.4561466
  13. D. Kang, D. Yu, K. Min, K. Han, J. Choi, D. Kim, B. Jin, M. Jun, and B. Kim, "A highly efficient and linear class-AB/F power amplifier for multi-mode operation," IEEE Trans. Microw. Theory Tech., Vol. 56, No.1, pp.77–87, Jan. 2008 https://doi.org/10.1109/TMTT.2007.911967
  14. V. Pinon, F. Hasbani, A. Giry, D. Pache, and C. Garnier, "A single-chip WCDMA envelope reconstruction LDMOS PA with 130MHz switched-mode power supply," IEEE Int'l Solid State Circ. Conf. Dig. Tech. Papers, Feb., 2008, pp.564–565 https://doi.org/10.1109/ISSCC.2008.4523308
  15. A. Shameli, A. Safarian, A. Rofougaran, M. Rofougaran, F. DeFlaviis, "A two-point modulation technique for CMOS power amplifier in polar transmitter architecture," IEEE Trans. Microw. Theory Tech., Vol.56, No.1, pp.31–38, Jan., 2008 https://doi.org/10.1109/TMTT.2007.912012
  16. W. Chu, B. Bakkaloglu, and S. Kiaei, "A 10MHz-bandwidth 2mV-ripple PA-supply regulator for CDMA transmitters," IEEE Int'l Solid State Circ. Conf. Dig. Tech. Papers, Feb., 2008, pp.448–449 https://doi.org/10.1109/ISSCC.2008.4523250
  17. D. Kang, D. Yu, K. Min, J. Choi, M. Jun, D. Kim, and B. Kim, "Class-AB/F Doherty power amplifiers," Proc. 38th Eur. Microw. Conf., Amsterdam, Netherlands, Oct., 2008 https://doi.org/10.1109/EUMC.2008.4751430
  18. S. Chung, J. W. Holloway, and J. L. Dawson, "Energy-efficient digital predistortion with lookup table training using analog cartesian feedback," IEEE Trans. Microw. Theory Tech., Vol.56, No.10, pp.2248–2258, Oct., 2008 https://doi.org/10.1109/TMTT.2008.2003139
  19. K. Takahashi, S. Yamanouchi, T. Hirayama, K. Kunihiro, "An envelope tracking power amplifier using an adaptive biased envelope amplifier for WCDMA handsets," in Radio Frequency Integrated Circuits (RFIC) Symp., June 2008, pp.405–408 https://doi.org/10.1109/RFIC.2008.4561464
  20. K. Han, and B. Kim, "A parallel power amplifier with a novel mode switching control," IEEE Microw. Compon. Lett., Vol.18, No.3, pp.200–202, Mar., 2008 https://doi.org/10.1109/LMWC.2008.916813
  21. D. Kang, J. Choi, D. Yu, K. Min, M. Jun, D. Kim, J. Park, B. Jin, and B. Kim, "Input power dividing of Doherty power amplifiers for handset applications," IEEE MTT-S Int. Microwave Symp., Boston, MA, USA, Jun., 2009 https://doi.org/10.1109/MWSYM.2009.5165723
  22. J. Choi, D. Kim, D. Kang, and B. Kim, "A polar transmitter with CMOS programmable hystereticcontrolled hybrid switching supply modulator for multi-standard applications," IEEE Trans. Microw. Theory Tech., Vol.57, No.7, pp.1675-1686, July, 2009 https://doi.org/10.1109/TMTT.2009.2021880
  23. D. Chowdhury, C. D. Hull, O. B. Degani, P. Goyal, Y. Wang, and A. M. Niknejad, "A single-chip highly linear 2.4GHz 30dBm power amplifier in 90nm CMOS," IEEE Int'l Solid State Circ. Conf. Dig. Tech. Papers, Feb., 2009, pp.378–379 https://doi.org/10.1109/ISSCC.2009.4977466
  24. J. Choi, D. Kang, D. Kim, and B. Kim, 'Optimized envelope tracking operation of Doherty power amplifier for high efficiency over an extended dynamic range,' IEEE Trans. Microw. Theory Tech., Vol.57, No.6, pp.1508-1515, June 2009 https://doi.org/10.1109/TMTT.2009.2020674
  25. D. Kang, J. Choi, M. Jun, D. Kim, J. Park, B. Jin, D. Yu, K. Min, and B. Kim, "Broadband class-F power amplifiers for handset applications," Proc. 39th Eur. Microw. Conf., Roma, Italy, Oct., 2009
  26. C. Presti, F. Carrara, A. Scuderi, P. Asbeck, and G. Palmisaro, "A 25dBm digitally modulated CMOS power amplifier for WCDMA/EDGE/OFDM with adaptive digital predistortion and efficient power control," IEEE J. Solid-State Circuits, Vol.44, No.7, pp.1883–1896, July 2009 https://doi.org/10.1109/JSSC.2009.2020226
  27. K. Peng, C. Huang, C. Li, and T. Horng, "High performance frequency-hopping transmitters using two-point Delta-Sigma modulation," IEEE Trans. Microw. Theory Tech., Vol.52, No.11, pp.2529–2535, Nov., 2004
  28. R. Staszewski and P. Balsara, "Phase-domain all digital phase-locked loop," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 52, No.3, pp.159–163, Mar., 2005 https://doi.org/10.1109/TCSII.2004.842067
  29. R. Staszewski and P. Balsara, "All-digital PLL with ultra fast settling," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol.54, No.2, pp.181–185, Feb., 2007 https://doi.org/10.1109/TCSII.2006.886896
  30. M. Ferriss and M. P. Flynn, "A 14mW fractional-N PLL modulator with an enhanced digital phase detector and frequency switching scheme," in Dig. Tech. Papers IEEE Int. Solid-State Circuits Conf., 2007, pp.352.353 https://doi.org/10.1109/ISSCC.2007.373439
  31. M. Cassia, A. Hadjichristos, H. Kim, J. Ko, J. Yang, S. Lee, and G. Sahota, "A low-power CMOS SAW-less quad band WCDMA/HSPA/HSPA+/1X/EGPRS transmitter," IEEE J. Solid-State Circuits, Vol.44, No.7, pp.1897–1906, July 2009 https://doi.org/10.1109/JSSC.2009.2020228
  32. P. Rajaetal., "An integrated closed-loop polar transmitter with saturation prevention and low-IF receiver for quad-band GPRS/EDGE," IEEE Int'l Solid State Circ. Conf. Dig. Tech. Papers, Feb., 2009, pp.112–113 https://doi.org/10.1109/ISSCC.2009.4977333
  33. P. Eloranta, P. Seppinen, S. Kallioinen, T. Saarela, and A. Parssinen, "A multimode transmitter in 0.13${\mu}m$ CMOS using direct-digital RF modulator," IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2774–2784, Dec. 2007 https://doi.org/10.1109/JSSC.2007.908749
  34. S. Kousai and A. Hajimiri, "An octave-range watt-level fully integrated CMOS switching power mixer array for linearization and back-off efficiency improvement," IEEE Int'l Solid-State Circ. Conf. Dig. Tech. Papers, Feb., 2009, pp.376–367 https://doi.org/10.1109/ISSCC.2009.4977465
  35. T. Wooten and L. Larson, "A 1 Watt 1-5 GHz class-B push-pull Si/SiGe HBT power amplifier," IEEE Custom Integ. Circ. Conf. Dig. Tech. Papers, Sep., 2009, pp.387-390 https://doi.org/10.1109/CICC.2009.5280805

Cited by

  1. Efficiently Amplified vol.11, pp.5, 2010, https://doi.org/10.1109/MMM.2010.937099
  2. A Saturated Doherty Power Amplifier Based On Saturated Amplifier vol.20, pp.2, 2010, https://doi.org/10.1109/LMWC.2009.2038554
  3. Optimized Design of a Highly Efficient Three-Stage Doherty PA Using Gate Adaptation vol.58, pp.10, 2010, https://doi.org/10.1109/TMTT.2010.2063831
  4. A Multimode/Multiband Power Amplifier With a Boosted Supply Modulator vol.58, pp.10, 2010, https://doi.org/10.1109/TMTT.2010.2063851
  5. Investigation of a Class-J Power Amplifier With a Nonlinear $C_{\rm out}$ for Optimized Operation vol.58, pp.11, 2010, https://doi.org/10.1109/TMTT.2010.2077970
  6. Design of Doherty Power Amplifiers for Handset Applications vol.58, pp.8, 2010, https://doi.org/10.1109/TMTT.2010.2053074
  7. Broadband HBT Doherty Power Amplifiers for Handset Applications pp.1557-9670, 2010, https://doi.org/10.1109/TMTT.2010.2086070
  8. Highly efficient 3-stage Doherty power amplifier using gate bias adaption vol.3, pp.01, 2011, https://doi.org/10.1017/S1759078710000711
  9. Efficiency Enhancement of Doherty Amplifier Through Mitigation of the Knee Voltage Effect vol.59, pp.1, 2011, https://doi.org/10.1109/TMTT.2010.2091207
  10. Phase Dependent Distortion in Direct Conversion Transmitters vol.59, pp.12, 2011, https://doi.org/10.1109/TMTT.2011.2170577
  11. A Multimode/Multiband Envelope Tracking Transmitter With Broadband Saturated Amplifier vol.59, pp.12, 2011, https://doi.org/10.1109/TMTT.2011.2170580
  12. Design of Bandwidth-Enhanced Doherty Power Amplifiers for Handset Applications vol.59, pp.12, 2011, https://doi.org/10.1109/TMTT.2011.2171042
  13. Enhanced Hammerstein Behavioral Model for Broadband Wireless Transmitters vol.59, pp.4, 2011, https://doi.org/10.1109/TMTT.2011.2110659
  14. A New Power Management IC Architecture for Envelope Tracking Power Amplifier vol.59, pp.7, 2011, https://doi.org/10.1109/TMTT.2011.2134108
  15. Behaviors of Class-F and Class-${\hbox{F}}^{-1}$ Amplifiers vol.60, pp.6, 2012, https://doi.org/10.1109/TMTT.2012.2190749
  16. Optimization of Envelope Tracking Power Amplifier for Base-Station Applications vol.61, pp.4, 2013, https://doi.org/10.1109/TMTT.2013.2248375
  17. Dual Bias Modulator for Envelope Tracking and Average Power Tracking Modes for CMOS Power Amplifier vol.14, pp.6, 2014, https://doi.org/10.5573/JSTS.2014.14.6.802
  18. Performance Enhancement of OFDM-Based Systems Using Improved Parametric Linear Combination Pulses vol.85, pp.3, 2015, https://doi.org/10.1007/s11277-015-2810-7
  19. Bottom-layer solutions for 60 GHz millimeter-wave wireless networks: modulation and multiplexing access techniques vol.61, pp.4, 2016, https://doi.org/10.1007/s11235-015-0019-4