Browse > Article
http://dx.doi.org/10.4014/jmb.0803.209

Diverse Antibacterial Activity of Pectobacterium carotovorum subsp. carotovorum Isolated in Korea  

Roh, Eun-Jung (Division of Plant Pathology, National Institute of Agricultural Science and Technology, Rural Development Administration)
Lee, Seung-Don (Division of Plant Pathology, National Institute of Agricultural Science and Technology, Rural Development Administration)
Lee, Yong-Hoon (Division of Plant Pathology, National Institute of Agricultural Science and Technology, Rural Development Administration)
Ra, Dong-Su (Division of Plant Pathology, National Institute of Agricultural Science and Technology, Rural Development Administration)
Choi, Jae-Hyuk (Department of Molecular Science and Technology, Ajou University)
Moon, Eun-Pyo (Department of Biological Science, Ajou University)
Heu, Sung-Gi (Division of Plant Pathology, National Institute of Agricultural Science and Technology, Rural Development Administration)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.1, 2009 , pp. 42-50 More about this Journal
Abstract
Fifty-four Pectobacterium carotovorum subsp. carotovorum strains isolated in Korea were characterized by a spectrum of antibacterial activities against 7 indicator strains chosen to represent various regions and host plants. All P. carotovorum subsp. carotovorum isolates tested could be grouped into 4 classes depending on the pattern of antibacterial substance production. All tested strains had DNA fragment(s) homologous to the genes encoding carotovoricin and 21 of them had genes homologous to DNA invertase. Sixteen strains had genes homologous to the genes encoding carocin S1. Several isolates produced antibacterial substances active against strains in Brenneria, Pantoea, and Pectobacterium genera that belonged formerly to the genus Erwinia. Strains in Pseudomonas or Xanthomonas sp. were not sensitive to the antibacterial substances produced by P. carotovorum subsp. carotovorum, except for X. albilineans that was sensitive to antibacterial substances produced by most strains in P. carotovorum subsp. carotovorum and P. betavasculorum KACC10056. These results demonstrated the diverse patterns of antibacterial substance production and the possibility of the existence of new antibacterial substance(s) produced by P. carotovorum subsp. carotovorum isolated in Korea.
Keywords
Soft rot; bacteriocin; antibacterial substance; carotovoricin; carocin S1;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Morgan, S., R. P. Ross, and C. Hill. 1995. Bacteriolytic activity caused by the presence of a novel lactococcal plasmid encoding lactococcins A, B, and M. Appl. Environ. Microbiol. 61: 2995-3001   PUBMED   ScienceOn
2 Schroth, M. N. and J. G. Hancock. 1981. Selected topics in biological control. Annu. Rev. Microbiol. 35: 453-476   DOI   ScienceOn
3 Yamada, K., M. Hirota, Y. Niimi, H. A. Nguyen, Y. Takahara, Y. Kamio, and J. Kaneko. 2006. Nucleotide sequences and organization of the genes for carotovoricin (Ctv) from Erwinia carotovora indicate that Ctv evolved from the same ancestor as Salmonella typhi prophage. Biosci. Biotechnol. Biochem. 70: 2236-2247   DOI   ScienceOn
4 Riley, M. A. and J. E. Wertz. 2002. Bacteriocins: Evolution, ecology, and application. Annu. Rev. Microbiol. 56: 117-137   DOI   ScienceOn
5 Nguyen, H. A., T. Tomita, M. Hirota, J. Kaneko, T. Hayashi, and Y. Kamio. 2001. DNA inversion in the tail fiber gene alters the host range specificity of carotovoricin Er, a phage-tail-like bacteriocin of phytopathogenic Erwinia carotovora subsp. carotovora Er. J. Bacteriol. 183: 6274-6281   DOI   ScienceOn
6 Gardan, L., C. Gouy, R. Christen, and R. Samson. 2003. Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int. J. Syst. Evol. Microbiol. 53: 381-391   DOI   ScienceOn
7 Heu, S., J. Oh, Y. Kang, S. Ryu, S. K. Cho, Y. Cho, and M. Cho. 2001. gly Gene cloning and expression and purification of glycinecin A, a bacteriocin produced by Xanthomonas campestris pv. glycines 8ra. Appl. Environ. Microbiol. 67: 4105-4110   DOI   ScienceOn
8 Riley, M. A. and D. M. Gordon. 1999. The ecological role of bacteriocins in bacterial competition. Trends Microbiol. 7: 129-133   DOI   ScienceOn
9 Chuang, D. Y., Y. C. Chien, and H. P. Wu. 2007. Cloning and expression of the Erwinia carotovora subsp. carotovora gene encoding the low-molecular-weight bacteriocin carocin S1. J. Bacteriol. 189: 620-626   DOI   ScienceOn
10 Tagg, J. R., A. S. Dajani, and L. W. Wannamaker. 1976. Bacteriocins of Gram-positive bacteria. Bacteriol. Rev. 40: 722-756   PUBMED   ScienceOn
11 Lavermicocca, P., S. L. Lonigro, F. Valerio, A. Evidente, and A. Visconti. 2002. Reduction of olive knot disease by a bacteriocin from Pseudomonas syringae pv. ciccaronei. Appl. Environ. Microbiol. 68: 1403-1407   DOI   ScienceOn
12 Pugsley, A. P. 1984. The ins and outs of colicins. Part I: Production, and translocation across membranes. Microbiol. Sci. 1: 168-175   PUBMED   ScienceOn
13 Brown, E. W., R. M. Davis, C. Gouk, and T. van der Zwet. 2000. Phylogenetic relationships of necrogenic Erwinia and Brenneria species as revealed by glyceraldehyde-3-phosphate dehydrogenase gene sequences. Int. J. Syst. Evol. Microbiol. 50: 2057-2068   DOI   PUBMED   ScienceOn
14 McClure, N. C., A. R. Ahmadi, and B. G. Clare. 1998. Construction of a range of derivatives of the biological control strain Agrobacterium rhizogenes K84: A study of factors involved in biological control of crown gall disease. Appl. Environ. Microbiol. 64: 3977-3982   PUBMED   ScienceOn
15 Riley, M. A. 1998. Molecular mechanisms of bacteriocin evolution. Annu. Rev. Genet. 32: 255-278   DOI   PUBMED   ScienceOn
16 Guasch, J. F., J. Enfedaque, S. Ferrer, D. Gargallo, and M. Regue. 1995. Bacteriocin 28b, a chromosomally encoded bacteriocin produced by most Serratia marcescens biotypes. Res. Microbiol. 146: 477-483   DOI   ScienceOn
17 Sambrook, J., E. F. Fritsch, and T. Maniatis 1989. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
18 Nguyen, A. H., T. Tomita, M. Hirota, T. Sato, and Y. Kamio. 1999. A simple purification method and morphology and component analyses for carotovoricin Er, a phage-tail-like bacteriocin from the plant pathogen Erwinia carotovora Er. Biosci. Biotechnol. Biochem. 63: 1360-1369   DOI   ScienceOn
19 Kerr, A. and M. E. Tate. 1984. Agrocins and the biological control of crown gall. Microbiol. Sci. 1: 1-4   PUBMED   ScienceOn
20 Abrehem, K. and I. Zamiri. 1985. Purification and characterization of a Corynebacterium ulcerans bacteriocin (ulceracin 378). J. Gen. Microbiol. 131: 707-713   PUBMED   ScienceOn
21 Sano, Y., H. Matsui, M. Kobayashi, and M. Kageyama. 1993. Molecular structures and functions of pyocins S1 and S2 in Pseudomonas aeruginosa. J. Bacteriol. 175: 2907-2916   DOI   PUBMED   ScienceOn
22 Hauben, L., E. R. Moore, L. Vauterin, M. Steenackers, J. Mergaert, L. Verdonck, and J. Swings. 1998. Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst. Appl. Microbiol. 21: 384-397   DOI   PUBMED   ScienceOn