DOI QR코드

DOI QR Code

Novel Diagnostic Algorithm Using tuf Gene Amplification and Restriction Fragment Length Polymorphism is Promising Tool for Identification of Nontuberculous Mycobacteria

  • Shin, Ji-Hyun (Division of Bacterial Respiratory Infection, Center for Infectious Diseases, National Institute of Health, Centers for Disease Control and Prevention) ;
  • Cho, Eun-Jin (Division of Bacterial Respiratory Infection, Center for Infectious Diseases, National Institute of Health, Centers for Disease Control and Prevention) ;
  • Lee, Jung-Yeon (Division of Bacterial Respiratory Infection, Center for Infectious Diseases, National Institute of Health, Centers for Disease Control and Prevention) ;
  • Yu, Jae-Yon (Division of Bacterial Respiratory Infection, Center for Infectious Diseases, National Institute of Health, Centers for Disease Control and Prevention) ;
  • Kang, Yeon-Ho (Division of Bacterial Respiratory Infection, Center for Infectious Diseases, National Institute of Health, Centers for Disease Control and Prevention)
  • Received : 2008.04.10
  • Accepted : 2008.08.05
  • Published : 2009.03.31

Abstract

Nontuberculous mycobacteria (NTM) are a major cause of opportunistic infections in immunocompromised patients, making the reliable and rapid identification of NTM to the species level very important for the treatment of such patients. Therefore, this study evaluated the usefulness of the novel target genes tuf and tmRNA for the identification of NTM to the species level, using a PCRrestriction fragment length polymorphism analysis (PRA). A total of 44 reference strains and 17 clinical isolates of the genus Mycobacterium were used. The 741 bp or 744 bp tuf genes were amplified, restricted with two restriction enzymes (HaeIII/MboI), and sequenced. The tuf gene-PRA patterns were compared with those for the tmRNA (AvaII), hsp65 (HaeIII/HphI), rpoB (MspI/HaeIII), and 16S rRNA (HaeIII) genes. For the reference strains, the tuf gene-PRA yielded 43 HaeIII patterns, of which 35 (81.4%) showed unique patterns on the species level, whereas the tmRNA, hsp65, rpoB, and 16S rRNA-PRAs only showed 10 (23.3%), 32 (74.4%), 19 (44.2%), and 3 (7%) unique patterns after single digestion, respectively. The tuf gene-PRA produced a clear distinction between closely related NTM species, such as M. abscessus (557-84-58) and M. chelonae (477-84-80-58), and M. kansasii (141-136-80-63-58-54-51) and M. gastri (141-136-117-80-58-51). No difference was observed between the tuf-PRA patterns for the reference strains and clinical isolates. Thus, a diagnostic algorithm using a tuf gene-targeting PRA is a promising tool with more advantages than the previously used hsp65, rpoB, and 16S rRNA genes for the identification of NTM to the species level.

Keywords

References

  1. Ad$\acute{e}$kambi, To$\ddot{i}$di, P. Berger, D. Raoult, and M. Drancourt. 2006. rpoB gene sequence-based characterization of emerging nontuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int. J. Syst. Evol. Microbiol. 56: 133-143 https://doi.org/10.1099/ijs.0.63969-0
  2. Ad$\acute{e}$kambi, T. and M. Drancourt. 2004. Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA, and rpoB gene sequencing. Int. J. Syst. Evol. Microbiol. 54: 2095-2105 https://doi.org/10.1099/ijs.0.63094-0
  3. Afghani, B. and H. R. Stutman. 1996. Polymerase chain reaction for diagnosis of M. tuberculosis: Comparison of simple boiling and a conventional method for DNA extraction. Biochem. Mol. Med. 57: 14-18 https://doi.org/10.1006/bmme.1996.0003
  4. Barends, S., A. W. Karzai, R. T. Sauer, J. Wower, and B. Kraal. 2001. Simultaneous and functional binding of SmpB and EF-Tu-GTP to the alanyl acceptor arm of tmRNA. J. Mol. Biol. 314: 9-21 https://doi.org/10.1006/jmbi.2001.5114
  5. Brown-Elliott, B. A. and R. J. Wallace Jr. 2002. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin. Microbiol. Rev. 15: 716-746 https://doi.org/10.1128/CMR.15.4.716-746.2002
  6. Brunello, F., M. Ligozzi, E. Cristelli, S. Bonora, E. Tortoli, and R. Fontana. 2001. Identification of 54 mycobacterial species by PCR-restriction fragment length polymorphism analysis of the hsp65 gene. J. Clin. Microbiol. 39: 2799-2806 https://doi.org/10.1128/JCM.39.8.2799-2806.2001
  7. Butler, W. R. and L. S. Guthertz. 2001. Mycolic acid analysis by high-performance liquid chromatography for identification of Mycobacterium species. Clin. Microbiol. Rev. 14: 704-726 https://doi.org/10.1128/CMR.14.4.704-726.2001
  8. Cloud, J. L., H. Neal, R. Rosenberry, C. Y. Turenne, M. Jama, D. R. Hillyard, and K. C. Carroll. 2002. Identification of Mycobacterium spp. by using a commercial 16S ribosomal DNA sequencing kit and additional sequencing libraries. J. Clin. Microbiol. 40: 400-406 https://doi.org/10.1128/JCM.40.2.400-406.2002
  9. Devulder, G., M. P$\acute{e}$rouse de Montclos, and J. P. Flandrois. 2005. A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int. J. Syst. Evol. Microbiol. 55: 293-302 https://doi.org/10.1099/ijs.0.63222-0
  10. Devulder, G., G. Perri$\acute{e}$re, F. Baty, and J. P. Flandrois. 2003. BIBI, a bioinformatics bacterial identification tool. J. Clin. Microbiol. 41: 1785-1787 https://doi.org/10.1128/JCM.41.4.1785-1787.2003
  11. Dulebohn, D., J. Choy, T. Sundermeier, N. Okan, and A. W. Karzai. 2007. Trans-translation: The tmRNA-mediated surveillance mechanism for ribosome rescue, directed protein degradation, and nonstop mRNA decay. Biochemistry 46: 4681-4693 https://doi.org/10.1021/bi6026055
  12. Gillet, R. and B. Felden. 2001. Emerging views on tmRNAmediated protein tagging and ribosome rescue. Mol. Microbiol. 42: 879-885 https://doi.org/10.1046/j.1365-2958.2001.02701.x
  13. Griffith, D. E., T. Aksamit, B. A. Brown-Elliott, A. Catanzaro, C. Daley, F. Gordin, et al. ATS Mycobacterial Diseases Subcommittee;American Thoracic Society; Infectious Disease Society of America. 2007. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 175: 367-416 https://doi.org/10.1164/rccm.200604-571ST
  14. Hernandez, S. M., G. P. Morlock, W. R. Butler, J. T. Crawford, and R. C. Cooksey. 1999. Identification of Mycobacterium species by PCR-restriction fragment length polymorphism analyses using fluorescence capillary electrophoresis. J. Clin. Microbiol. 37: 3688-3692
  15. Jeong, J., S. R. Kim, C. L. Chang, and S. H. Lee. 2008. Identification of mycobacteria species by HPLC and species distribution during five years at Ulsan university hospital. Korean J. Lab. Med. 28: 24-33 https://doi.org/10.3343/kjlm.2008.28.1.24
  16. Karzai, A. W., E. D. Roche, and R. T. Sauer. 2000. The SsrASmpB system for protein tagging, directed degradation and ribosome rescue. Nat. Struct. Biol. 7: 449-455 https://doi.org/10.1038/75843
  17. Katoch, V. M. 2004. Infections due to non-tuberculous mycobacteria (NTM). Indian J. Med. Res. 120: 290-304
  18. Khan, I. U., S. B. Selvaraju, and J. S. Yadav. 2005. Method for rapid identification and differentiation of the species of the Mycobacterium chelonae complex based on 16S-23S rRNA gene internal transcribed spacer PCR-restriction analysis. J. Clin. Microbiol. 43: 4466-4472 https://doi.org/10.1128/JCM.43.9.4466-4472.2005
  19. Kim, H., S. H. Kim, T. S. Shim, M. N. Kim, G. H. Bai, Y. G. Park, et al. 2005. Differentiation of Mycobacterium species by analysis of the heat-shock protein 65 gene (hsp65). Int. J. Syst. Evol. Microbiol. 55: 1649-1656 https://doi.org/10.1099/ijs.0.63553-0
  20. Lathe, W. C. III and P. Bork. 2001. Evolution of tuf genes:Ancient duplication, differential loss and gene conversion. FEBS Lett. 502: 113-116 https://doi.org/10.1016/S0014-5793(01)02639-4
  21. Lee, H., H. J. Park, S. N. Cho, G. H. Bai, and S. J. Kim. 2000. Species identification of mycobacteria by PCR-restriction fragment length polymorphism of the rpoB gene. J. Clin Microbiol. 38:2966-2971
  22. Martin, A., C$\acute{e}$cile Uwizeye, K. Fissette, P. De Rijk, J. C. Palomino, S. Leao, and Fran$\c{c}$oise. Portaels. 2007. Application of the hsp65 PRA method for the rapid identification of mycobacteria isolated from clinical samples in Belgium. J. Microbiol. Methods 71: 39-43 https://doi.org/10.1016/j.mimet.2007.07.008
  23. Mignard, S. and J. P. Flandrois. 2007. Identification of Mycobacterium using the EF-Tu encoding (tuf) gene and the tmRNA encoding (ssrA) gene. J. Med. Microbiol. 56: 1033-1041 https://doi.org/10.1099/jmm.0.47105-0
  24. Picard, François. J., D. Ke, D. K. Boudreau, M. Boissinot, A. Huletsky, D. Richard, M. Ouellette, P. H. Roy, and M. G. Bergeron. 2004. Use of tuf sequences for genus-specific PCR detection and phylogenetic analysis of 28 streptococcal species. J. Clin. Microbiol. 42: 3686-3695 https://doi.org/10.1128/JCM.42.8.3686-3695.2004
  25. Sch$\ddot{o}$nhuber, W., G. Le Bourhis, J. Tremblay, R. Amann, and S. Kulakauskas. 2001. Utilization of tmRNA sequences for bacterial identification. BMC Microbiol. 1: 20 https://doi.org/10.1186/1471-2180-1-20
  26. Sela, S., D. Yogev, S. Razin, and H. Bercovier. 1989. Duplication of the tuf gene: A new insight into the phylogeny of eubacteria. J. Bacteriol. 171: 581-584 https://doi.org/10.1128/jb.171.1.581-584.1989
  27. Shimizu, Y. and T. Ueda. 2006. SmpB triggers GTP hydrolysis of elongation factor Tu on ribosomes by compensating for the lack of codon-anticodon interaction during trans-translation initiation. J. Biol. Chem. 281: 15987-15996 https://doi.org/10.1074/jbc.M512165200
  28. Springer, B., L. Stockman, K. Teschner, G. D. Roberts, and E. C. B$\ddot{o}$ttger. 1996. Two-laboratory collaborative study on identification of mycobacteria: Molecular versus phenotypic methods. J. Clin. Microbiol. 34: 296-303
  29. Stahl, D. A. and J. W. Urbance. 1990. The division between fast- and slow-growing species corresponds to natural relationships among the mycobacteria. J. Bacteriol. 172: 116-124 https://doi.org/10.1128/jb.172.1.116-124.1990
  30. Takewaki, S., K. Okuzumi, I. Manabe, M. Tanimura, K. Miyamura, K. Nakahara, Y. Yazaki, A. Ohkubo, and R. Nagai. 1994. Nucleotide sequence comparison of the mycobacterial dnaJ gene and PCR-restriction fragment length polymorphism analysis for identification of mycobacterial species. Int. J. Syst. Bacteriol. 44: 159-166 https://doi.org/10.1099/00207713-44-1-159
  31. Telenti, A., F. Marchesi, M. Balz, F. Bally, E. C. B$\ddot{o}$ttger, and T. Bodmer. 1993. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J. Clin. Microbiol. 31: 175-178
  32. Tortoli, E., A. Bartoloni, E. C. B\ddot{o}ttger, S. Emler, C. Garzelli, E. Magliano, et al. 2001. Burden of unidentifiable mycobacteria in a reference laboratory. J. Clin. Microbiol. 39: 4058-4065 https://doi.org/10.1128/JCM.39.11.4058-4065.2001
  33. Wolinsky, E. 1992. Mycobacterial diseases other than tuberculosis. Clin. Infect. Dis. 15: 1-10 https://doi.org/10.1093/clinids/15.1.1
  34. Yamada-Noda, M., K. Ohkusu, H. Hata, M. M. Shah, P. H. Nhung, X. S. Sun, M. Hayashi, and T. Ezaki. 2007. Mycobacterium species identification - a new approach via danJ gene sequencing. Syst. Appl. Microbiol. 30: 453-462 https://doi.org/10.1016/j.syapm.2007.06.003

Cited by

  1. Molecular identification of nontuberculous mycobacteria isolates in a Brazilian mycobacteria reference laboratory vol.68, pp.4, 2009, https://doi.org/10.1016/j.diagmicrobio.2010.07.019
  2. Molecular Typing of Mycobacterium intracellulare Using Pulsed-Field Gel Electrophoresis, Variable-Number Tandem-Repeat Analysis, Mycobacteria Interspersed Repetitive-Unit-Variable-Number Tandem Repe vol.5, pp.3, 2009, https://doi.org/10.1016/j.phrp.2014.04.003
  3. TB or not TB? Mycobacterium celatum mimicking Mycobacterium tuberculosis : A case of mistaken identity vol.11, pp.None, 2009, https://doi.org/10.1016/j.idcr.2018.01.015
  4. Efficient differentiation of Nocardia farcinica , Nocardia cyriacigeorgica and Nocardia beijingensis by high-resolution melting analysis using a novel locus vol.69, pp.12, 2009, https://doi.org/10.1099/jmm.0.001205