DOI QR코드

DOI QR Code

Identification of an Entomopathogenic Bacterium, Serratia sp. ANU101, and Its Hemolytic Activity

  • Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Keun-Seob (Department of Bioresource Sciences, Andong National University) ;
  • Seo, Ji-Ae (Department of Bioresource Sciences, Andong National University) ;
  • Shrestha, Sony (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Hosanna-H. (Kyungbuk Science High School) ;
  • Nalini, Madanagopal (Department of Bioresource Sciences, Andong National University) ;
  • Yi, Young-Keun (Department of Bioresource Sciences, Andong National University)
  • Received : 2008.06.11
  • Accepted : 2008.07.30
  • Published : 2009.03.31

Abstract

Four different bacterial colonies were isolated from an old stock of an entomopathogenic nematode, Steinernema monticolum. They all showed entomopathogenicity to final instar larvae of beet armyworm, Spodoptera exigua, by hemocoelic injection. However, they varied in colony form, susceptibility to antibiotics, and postmortem change of the infected host insects. Biolog microbial identification and 16S rDNA sequence analyses indicate that these are four different species classified into different bacterial genera. Owing to high entomopathogenicity and a cadaver color of infected insect host, Serratia sp. was selected as a main symbiotic bacterial species and analyzed for its pathogenicity. Although no virulence of Serratia sp. was detected at oral administration, the bacteria gave significant synergistic pathogenicity to fifth instar S. exigua when it was treated along with a spore-forming entomopathogenic bacterium, Bacillus thuringiensis. The synergistic effect was explained by an immunosuppressive effect of Serratia sp. by its high cytotoxic effect on hemocytes of S. exigua, because Serratia sp. caused septicemia of S. exigua when the bacterial cells were injected into S. exigua hemocoel. The cytotoxic factor(s) was present in the culture medium because the sterilized culture broth possessed high potency in the cytotoxicity, which was specific to granular cells and plasmatocytes, two main immune-associated hemocytes in insects.

Keywords

References

  1. Akhurst, R. J. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303-309
  2. Babic, I., M. Fischer-Le Saux, E. Giraud, and N. Boemare. 2000. Occurrence of natural doxenic associations between the symbiont Photorhabdus luminescens and bacteria related to Ochrobactrum spp. in tropical entomopathogenic Heterorhanbitis spp. (Nematoda, Rhabditida). Microbiology 146: 709-718
  3. Boemare, N. E. 2002. Biology, Taxonomy and Systematics of Photorhabdus and Xenorhabdus, pp. 35-56, In R. Gaugler (ed.). Entomopathogenic Nematology. CABI Publishing, New York, NY
  4. Bucher, G. E. 1960. Potential bacterial pathogens of insects and their characteristics. J. Insect Pathol. 2: 172-195
  5. Cao, H., R. L. Baldini, and L. G. Rahme. 2001. Common mechanisms for pathogens of plants and animals. Annu. Rev. Phytopathol. 39: 259-284 https://doi.org/10.1146/annurev.phyto.39.1.259
  6. Dunphy, G. B. and J. M. Webster. 1984. Interaction of Xenorhabdus nematophilus subsp. nematophilus with the haemolymph of Galleria mellonella. J. Insect Physiol. 30: 883-889 https://doi.org/10.1016/0022-1910(84)90063-5
  7. Ehlers, R., S. Stoessel, and U. Wyss. 1990. The influence of phase variants of Xenorhabdus spp. and Escherichia coli (Enterobacteriaceae) on the propagation of entomopathogenic nematodes of the genera Steinernema and Heterorhabditis. Rev. Nematol. 13: 417-424
  8. El-Borai, F. E., L. W. Duncan, J. F. Preston, and D. Dunn. 2003. A phoretic association between a putative Paenibacillus sp. and the entomopathogenic nematode Steinernema diaprepesi. J. Nematol. 35: 336-337
  9. Enright, M. R. and C. T. Griffin. 2005. Effects of Paenibacillus nematophilus on the entomopathogenic nematode Heterorhabditis megidis. J. Invertebr. Pathol. 88: 40-48 https://doi.org/10.1016/j.jip.2004.10.002
  10. Enright, M. R., J. O. McInerney, and C. T. Griffin. 2003. Characterization of endospore forming bacteria associated with entomopathogenic nematodes, Heterorhabditis spp. and description of Paenibacillus nematophilus sp. nov. Int. J. Syst. Evol. Microbiol. 53: 435-441 https://doi.org/10.1099/ijs.0.02344-0
  11. Ferr$\acute{e}$, J. and J. Van Rie. 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 47:501-533 https://doi.org/10.1146/annurev.ento.47.091201.145234
  12. Forcada, C., E. Alc$\acute{a}$cer, M. D. Garcer$\acute{a}$, Agust$\acute{i}$n. Tato, and R. Martinez. 1999. Resistance to Bacillus thuringiensis Cry1Ac toxin in three strains of Heliothis virescens: Proteolytic and SEM study of the larval midgut. Arch. Insect Biochem. Physiol. 42: 51-63 https://doi.org/10.1002/(SICI)1520-6327(199909)42:1<51::AID-ARCH6>3.0.CO;2-6
  13. Gahan, L. J., F. Gould, and D. G. Heckel. 2001. Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293: 857-860 https://doi.org/10.1126/science.1060949
  14. Gardiner, E. M. M. and M. R. Strand. 1999. Monoclonal antibodies bind distinct classes of hemocytes in the moth, Pseudoplusia includens. J. Insect Physiol. 45: 113-126 https://doi.org/10.1016/S0022-1910(98)00092-4
  15. Gho, H. G., S. G. Lee, B. P. Lee, K. M. Choi, and J. H. Kim. 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua (H$\ddot{u}$bner) (Lepidoptera: Noctuidae), on an artificial diet. Kor. J. Appl. Entomol. 29: 180-183
  16. Grimont, F. and P. A. D. Grimont. 2005. Genus XXXIV. Serratia, pp. 799-811, In D. J. Brenner, N. R. Krieg, and J. T. Staley. (eds.). Bergey's Manual of Systematic Bacteriology. 2nd Ed. Vol. 2. Part. B. Springer, New York
  17. Hacker, J$\ddot{o}$rg and J. B. Kaper. 2000. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54: 641-679 https://doi.org/10.1146/annurev.micro.54.1.641
  18. Humason, G. L. 1972. Animal Tissue Techniques. 3rd Ed. W.H. Freeman and Company, San Francisco, CA
  19. Jackson, T. J., H. Wang, M. T. Nugent, C. T. Grifin, A. M. Burnell, and B. C. A. Dowds. 1995. Isolation of insect pathogenic bacteria, Providencia rettgeri, from Heterorhabditis spp. J. Appl. Bacteriol. 78: 237-244
  20. Ji, D., Y. Yi, G. H. Kang, Y. H. Choi, P. Kim, N. I. Baek, and Y. Kim. 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila, against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239: 241-248 https://doi.org/10.1016/j.femsle.2004.08.041
  21. Jung, S. and Y. Kim. 2006. Synergistic effect of Xenorhabdus nematophila K1 and Bacillus thuringiensis subsp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Biol. Control 39:201-209 https://doi.org/10.1016/j.biocontrol.2006.07.002
  22. Jung, S. and Y. Kim. 2006. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35: 1584-1589 https://doi.org/10.1603/0046-225X(2006)35[1584:SEOEBX]2.0.CO;2
  23. Jung, S. and Y. Kim. 2007. Potentiating effect of Bacillus thuringiensis subsp. kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila K1 against diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 100: 246-250 https://doi.org/10.1603/0022-0493(2007)100[246:PEOBTS]2.0.CO;2
  24. Kang, S., G. Y. Kim, and Y. Kim. 2008. Identification of an entomopathogenic nematode, Steinernema monticolum, and its pathogenicities to the beet armyworm, Spodoptera exigua, and the diamondback moth, Plutella xylostella, in laboratory tests. J. Basic Life Res. Sci. 8: In press
  25. Kaya, H. K. 1990. Soil Ecology, pp. 215-231, In R. Gaugler and H. K. Kaya (eds.), Entomopathogenic Nematodes in Biological Control. CRC, Boca Raton, FL
  26. Kaya, H. K. and R. Gaugler. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38: 181-206 https://doi.org/10.1146/annurev.en.38.010193.001145
  27. Keen, N., B. Staskawicz, J. Mekalanos, F. Ausubel, and R. J. Cook. 2000. Pathogens and hosts: The dance is the same, the couples are different. Proc. Natl. Acad. Sci. USA 97: 8752-8753 https://doi.org/10.1073/pnas.97.16.8752
  28. Kim, Y., D. Ji, S. Cho, and Y. Park. 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase $A_2$ to induce host immunodepression. J. Invertebr. Pathol. 89: 258-264 https://doi.org/10.1016/j.jip.2005.05.001
  29. Lee, S., Y. Kim, and S. Han. 2000. An improved collecting method of the infective juveniles of the entomopathogenic nematode, Steinernema carpocapsae Weiser. Kor. J. Soil Zool. 5: 97-100
  30. Mahar, A. N., A. A. Al-Siyabi, S. A. Elawad, N. G. M. Hague, and S. R. Gowen. 2006. Application of toxins from the entomopathogenic bacterium, Xenorhabdus nematophila, for the control of insects on foliage. Comm. Appl. Biol. Ghent University 71: 233-238
  31. Mahar, A. N., M. Munir, S. Elawad, S. R. Gowen, and N. G. M. Hague. 2004. Microbial control of diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae), using bacteria (Xenorhabdus nematophila) and its metabolites from the entomopathogenic nematode, Steinernema carpocapsae. J. Zhejiang Univ. Sci. 5: 1183-1190 https://doi.org/10.1631/jzus.2004.1183
  32. Marti Jr., O. G. and P. Timper. 1999. Phoretic relationship between a Bacillus sp. and the entomopathogenic nematode, Heterorhabditis sp. J. Nematol. 31: 553
  33. Miller, J. S. T. Nguyen, and D. W. Stanley-Samuelson. 1994. Eicosanoids mediate insect nodulation responses to bacterial infection. Proc. Natl. Acad. Sci. U.S.A. 91: 12418-12422 https://doi.org/10.1073/pnas.91.26.12418
  34. Morishima, I., Y. Yamano, K. Inoue, and N. Matsuo. 1997. Eicosanoids mediate induction of immune genes in the fat body of the silkworm, Bombyx mori. FEBS Lett. 419: 83-86 https://doi.org/10.1016/S0014-5793(97)01418-X
  35. Nalini, M. and Y. Kim. 2007. A putative protein translation inhibitory factor encoded by Cotesia plutellae bracovirus suppresses host hemocyte-spreading behavior. J. Insect Physiol. 53:1283-1292 https://doi.org/10.1016/j.jinsphys.2007.07.004
  36. Oppert, B., K. J. Kramer, R. W. Beeman, D. Johnson, and W. H. McGaughey. 1997. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J. Biol. Chem. 272: 23473-23476 https://doi.org/10.1074/jbc.272.38.23473
  37. Rahman, M. M., H. L. S. Roberts, M. Sarjan, S. Asgari, and O. Schmidt. 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth, Ephestia kuchniella. Proc. Natl. Acad. Sci. U.S.A. 101: 2696-2699 https://doi.org/10.1073/pnas.0306669101
  38. Rahman, M. M., H. L. S. Roberts, and O. Schmidt. 2007. Tolerance to Bacillus thuringiensis endotoxin in immune-suppressed larvae of the flour moth, Ephestia kuniella. J. Invertebr. Pathol. 96:125-132 https://doi.org/10.1016/j.jip.2007.03.018
  39. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning, A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  40. Schaad, N. M. 1988. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 2nd Ed. APS Press, St. Paul, MN
  41. Stock, S. P., H. Y. Choo, and H. K. Kaya. 1997. An entomopathogenic nematode, Steinernema monticolum sp. n. (Rhabditida: Steinernematidae) from Korea with a key to other species. Nematologica 43: 15-29 https://doi.org/10.1163/004725997X00025
  42. Weisburg, G. W., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703 https://doi.org/10.1128/jb.173.2.697-703.1991
  43. Yi, Y., H. W. Park, S. Shrestha, J. Seo, Y. O. Kim, C. S. Shin, and Y. Kim. 2007. Identification of two entomopathogenic bacteria from a nematode pathogenic to the oriental beetle, Blitopertha orientalis. J. Microbiol. Biotechnol. 17: 968-978

Cited by

  1. An Entomopathogenic Nematode by Any Other Name vol.8, pp.3, 2012, https://doi.org/10.1371/journal.ppat.1002527
  2. Insecticidal potency of bacterial species Bacillus thuringiensis SV2 and Serratia nematodiphila SV6 against larvae of mosquito species Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus vol.110, pp.5, 2009, https://doi.org/10.1007/s00436-011-2708-6
  3. Friend or foe? A review of the mechanisms that driveSerratiatowards diverse lifestyles vol.59, pp.9, 2009, https://doi.org/10.1139/cjm-2013-0343
  4. Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relev vol.6, pp.None, 2009, https://doi.org/10.3389/fmicb.2015.00876
  5. Nematobacterial Complexes and Insect Hosts: Different Weapons for the Same War vol.9, pp.3, 2009, https://doi.org/10.3390/insects9030117
  6. Culturable symbionts associated with the reproductive and digestive tissues of the Neotropical brown stinkbug Euschistus heros vol.111, pp.12, 2009, https://doi.org/10.1007/s10482-018-1130-9
  7. Entomopathogenic nematode-gastropod interactions vol.53, pp.None, 2009, https://doi.org/10.21307/jofnem-2021-061