DOI QR코드

DOI QR Code

Development of an In Vitro Test System Measuring Transcriptional Downregulatory Activities on IL-13

  • Choi, Jeong-June (Laboratory of Pathology, College of Oriental Medicine, Daejeon University) ;
  • Park, Bo-Kyung (Laboratory of Pathology, College of Oriental Medicine, Daejeon University) ;
  • Park, Sun-Young (Laboratory of Pathology, College of Oriental Medicine, Daejeon University) ;
  • Yun, Chi-Young (Traditional Medicine Bio-Research Center, Daejeon University) ;
  • Kim, Dong-Hee (Laboratory of Pathology, College of Oriental Medicine, Daejeon University) ;
  • Kim, Jin-Sook (Korea Institute of Oriental Medicine) ;
  • Hwang, Eun-Sook (College of Pharmacy, Division of Life and Pharmaceutical Science, Center for Cell Signaling and Drug Discovery Research, Ewha Womans University) ;
  • Jin, Mi-Rim (Laboratory of Pathology, College of Oriental Medicine, Daejeon University)
  • Received : 2008.06.01
  • Accepted : 2008.07.28
  • Published : 2009.03.31

Abstract

Interleukin-13 (IL-13) has been proposed as a therapeutic target for bronchial asthma as it plays crucial roles in the pathogenesis of the disease. We developed an in vitro test system measuring transcriptional downregulatory activities on IL-13 as a primary screening method to select drug candidates from natural products. The promoter region of IL-13 (-2,048 to +1) was cloned into the upstream of a luciferase gene in the plasmid pGL4.14 containing the hygromycin resistance gene as a selection marker, generating pGL4.14-IL-13. The EL-4 thymoma and RBL-2H3 mast cells transiently expressing this plasmid highly produced the luciferase activities by responding to PI (PMA and ionomycin) stimulation up to 8-fold and 13-fold compared with the control, respectively, whereas cyclosporin A, a well-known antiasthmatic agent, significantly downregulated the activities. The BF1 clone of RBL-2H3 cells constitutively expressing pGL4.14-IL-13 was established by selecting surviving cells under a constant lethal dose of hygromycin treatment. The feasibility of this system was evaluated by measuring the downregulatory activities of 354 natural products on the IL-13 promoter using the BF1 clone. An extract from Morus bombycis (named TBRC 156) significantly inhibited PI-induced luciferase activities and IL-13 mRNA expression, but not the protein expression. Fisetin (named TBRC 353) inhibited not only PI-induced luciferase activities and mRNA expression, but also the IL-13 protein secretion, whereas myricetin (named TBRC 354) could not suppress the IL-13 expression at all. Our data indicated that this in vitro test system is able to discriminate the effects on IL-13 expression, and furthermore, that it might be suitable as a simple and time-saving primary screening system to select antiasthmatic agents by measuring transcriptional activities of the IL-13 promoter.

Keywords

References

  1. Arai, Y., S. Watanabe, M. Kimira, K. Shimoi, R. Mochizuki, and N. Kinae. 2000. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J. Nutr. 130: 2243-2250 https://doi.org/10.1093/jn/130.9.2243
  2. Blanchard, C., A. Mishra, H. Saito-Akei, P. Monk, I. Anderson, and M. E. Rothenberg. 2005. Inhibition of human interleukin-13-induced respiratory and oesophageal inflammation by antihuman-interleukin-13 antibody (CAT-354). Clin. Exp. Allergy 35: 1096-1103 https://doi.org/10.1111/j.1365-2222.2005.02299.x
  3. Choi, J. J., B. K. Park, G. Y. Song, J. S. Kim, J. H. Kim, D. H. Kim, et al. 2007. Establishment of an in vitro test system to evaluate the down-regulatory activities of natural products on IL-4. Arch. Pharm. Res. 30: 1102-1110 https://doi.org/10.1007/BF02980244
  4. Das, J., C. H. Chen, L. Yang, L. Cohn, P. Ray, and A. Ray. 2001. A critical role for NF-kappa B in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat. Immunol. 2: 45-50 https://doi.org/10.1038/83158
  5. Grunig, G., M. Warnock, A. E. Wakil, R. Venkayya, F. Brombacher, D. M. Rennick, et al. 1998. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282: 2261-2263 https://doi.org/10.1126/science.282.5397.2261
  6. Higa, S., T. Hirano, M. Kotani, M. Matsumoto, A. Fujita, M. Suemura, et al. 2003. Fisetin, a flavonol, inhibits $T_{H}2$-type cytokine production by activated human basophils. J. Allergy Clin. Immunol. 111: 1299-1306 https://doi.org/10.1067/mai.2003.1456
  7. Hirano, T., J. Arimitsu, S. Higa, T. Naka, A. Ogata, Y. Shima, et al. 2006. Luteolin, a flavonoid, inhibits CD40 ligand expression by activated human basophils. Int. Arch. Allergy Immunol. 140: 150-156 https://doi.org/10.1159/000092554
  8. Hirano, T., S. Higa, J. Arimitsu, T. Naka, Y. Shima, S. Ohshima, et al. 2004. Flavonoids such as luteolin, fisetin and apigenin are inhibitors of interleukin-4 and interleukin-13 production by activated human basophils. Int. Arch. Allergy Immunol. 134: 135-140 https://doi.org/10.1159/000078498
  9. Humbert, M., S. R. Durham, P. Kimmitt, N. Powell, B. Assoufi, R. Pfister, Menz, G$\ddot{u}$nter, et al. 1997. Elevated expression of messenger ribonucleic acid encoding IL-13 in the bronchial mucosa of atopic and nonatopic subjects with asthma. J. Allergy Clin. Immunol. 99:657-665 https://doi.org/10.1016/S0091-6749(97)70028-9
  10. Izuhara, K., K. Arima, S. Kanaji, T. Kanaji, and S. Ohta. 2007. IL-13 and its signal pathway: Promising targets in the development of a therapeutic agent for bronchial asthma. Curr. Signal Transduct. Ther. 2: 31-40 https://doi.org/10.2174/157436207779317128
  11. Izuhara, K., K. Arima, S. Kanaji, S. Ohta, and T. Kanaji. 2006. IL-13: A promising therapeutic target for bronchial asthma. Curr. Med. Chem. 13: 2291-2298 https://doi.org/10.2174/092986706777935140
  12. Kawai, M., T. Hirano, S. Higa, J. Arimitsu, M. Maruta, Y. Kuwahara, et al. 2007. Flavonoids and related compounds as anti-allergic substances. Allergol Int. 56: 113-123 https://doi.org/10.2332/allergolint.R-06-135
  13. Kishikawa, H., J. Sun, A. Choi, S. C. Miaw, and I. C. Ho. 2001. The cell type-specific expression of the murine IL-13 gene is regulated by GATA-3. J. Immunol. 167: 4414-4420 https://doi.org/10.4049/jimmunol.167.8.4414
  14. Klein, M., S. Klein-Hessling, A. Palmetshofer, E. Serfling, C. Tertilt, T. Bopp, et al. 2006. Specific and redundant roles for NFAT transcription factors in the expression of mast cellderived cytokines. J. Immunol. 177: 6667-6674 https://doi.org/10.4049/jimmunol.177.10.6667
  15. Lavenu-Bombled, C., C. D. Trainor, I. Makeh, P. H. Romeo, and I. Max-Audit. 2002. Interleukin-13 gene expression is regulated by GATA-3 in T cells: Role of a critical association of a GATA and two GATG motifs. J. Biol. Chem. 277: 18313-18321 https://doi.org/10.1074/jbc.M110013200
  16. Masuda, A., Y. Yoshikai, H. Kume, and T. Matsuguchi. 2004. The interaction between GATA proteins and activator protein-1 promotes the transcription of IL-13 in mast cells. J. Immunol. 173: 5564-5573 https://doi.org/10.4049/jimmunol.173.9.5564
  17. Monticelli, S., D. C. Solymar, and A. Rao. 2004. Role of NFAT proteins in IL13 gene transcription in mast cells. J. Biol. Chem. 279: 36210-36218 https://doi.org/10.1074/jbc.M406354200
  18. Morse, B., J. P. Sypek, D. D. Donaldson, K. J. Haley, and C. M. Lilly. 2002. Effects of IL-13 on airway responses in the guinea pig. Am. J. Physiol. Lung Cell Mol. Physiol. 282: L44-L49 https://doi.org/10.1152/ajplung.00296.2001
  19. Renauld, J. C. 2001. New insights into the role of cytokines in asthma. J. Clin. Pathol. 54: 577-589 https://doi.org/10.1136/jcp.54.8.577
  20. Shaheen, S. O., J. A. Sterne, R. L. Thompson, C. E. Songhurst, B. M. Margetts, and P. G. Burney. 2001. Dietary antioxidants and asthma in adults: Population-based case-control study. Am. J. Respir. Crit. Care Med. 164: 1823-1828 https://doi.org/10.1164/ajrccm.164.10.2104061
  21. Solymar, D. C., S. Agarwal, C. H. Bassing, F. W. Alt, and A. Rao. 2002. A 3' enhancer in the IL-4 gene regulates cytokine production by Th2 cells and mast cells. Immunity 17: 41-50 https://doi.org/10.1016/S1074-7613(02)00334-5
  22. Truyen, E., L. Coteur, E. Dilissen, L. Overbergh, L. J. Dupont, J. L. Ceuppens, et al. 2006. Evaluation of airway inflammation by quantitative Th1/Th2 cytokine mRNA measurement in sputum of asthma patients. Thorax 61: 202-208 https://doi.org/10.1136/thx.2005.052399
  23. Varadaradjalou, S., . F$\acute{e}$rd$\acute{e}$ric F$\acute{e}$ger, N. Thieblemont, N. B. Hamouda, J. M. Pleau, M. Dy, et al. 2003. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human mast cells. Eur. J. Immunol. 33: 899-906 https://doi.org/10.1002/eji.200323830
  24. Walter, D. M., J. J. McIntire, G. Berry, A. N. McKenzie, D. D. Donaldson, R. H. DeKruyff, et al. 2001. Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J. Immunol. 167: 4668-4675 https://doi.org/10.4049/jimmunol.167.8.4668
  25. Wills-Karp, M. 2004. Interleukin-13 in asthma pathogenesis. Immunol. Rev. 202: 175-190 https://doi.org/10.1111/j.0105-2896.2004.00215.x
  26. Wills-Karp, M., J. Luyimbazi, X. Xu, B. Schofield, T. Y. Neben, C. L. Karp, et al. 1998. Interleukin-13: Central mediator of allergic asthma. Science 282: 2258-2261 https://doi.org/10.1126/science.282.5397.2258
  27. Yamashita, M., M. Ukai-Tadenuma, M. Kimura, M. Omori, M. Inami, M. Taniguchi, et al. 2002. Identification of a conserved GATA3 response element upstream proximal from the interleukin-13 gene locus. J. Biol. Chem. 277: 42399-42408 https://doi.org/10.1074/jbc.M205876200
  28. Zheng, W. and R. A. Flavell. 1997. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89: 587-596
  29. Zhu, Z., R. J. Homer, Z. Wang, Q. Chen, G. P. Geba, J. Wang, et al. 1999. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J. Clin. Invest. 103: 779-788 https://doi.org/10.1172/JCI5909

Cited by

  1. A common variant associated with asthma, interleukin 13 R130Q, promotes the production of IgE vol.39, pp.4, 2009, https://doi.org/10.1111/j.1744-313x.2012.01091.x
  2. Suppressive effects of fructus of Magnolia denudata on IL-4 and IL-13 expression in T cells vol.49, pp.10, 2009, https://doi.org/10.1007/s11626-013-9670-9
  3. Eicosapentaenoic Acid and Docosahexaenoic Acid Suppress Th2 Cytokine Expression in RBL-2H3 Basophilic Leukemia Cells vol.17, pp.2, 2009, https://doi.org/10.1089/jmf.2013.2935