A Mutant Arthrospira platensis M20CJK3 Showing Enhanced Growth Rate and Floatation Activity

생장 및 부상성이 향상된 남세균 돌연변이 균주 Arthrospira platensis M20CJK3

  • Yoo, Chan (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Choong-Jae (Institute of Construction Technology, Kumho Engineering & Construction) ;
  • Choi, Gang-Guk (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ahn, Chi-Yong (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Choi, Jong-Soon (Proteome Analysis Team, Korea Basic Science Institute (KBSI)) ;
  • Oh, Hee-Mock (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 유찬 (한국생명공학연구원 환경바이오연구센터) ;
  • 김충재 (금호산업(주)) ;
  • 최강국 (한국생명공학연구원 생물자원센터) ;
  • 안치용 (한국생명공학연구원 환경바이오연구센터) ;
  • 최종순 (한국기초과학지원연구원 프로테옴연구팀) ;
  • 오희목 (한국생명공학연구원 환경바이오연구센터)
  • Received : 2009.09.02
  • Accepted : 2009.09.21
  • Published : 2009.09.30

Abstract

A photosynthetic cyanobacterium Arthrospira platensis, well known for health food supplement, was studied as a target species for atmospheric $CO_2$ removal as well as biomass production. Although the biomass of A. platensis was massively produced in many countries, the recovery cost of its biomass is still high. The purpose of this study was to develop the A. platensis mutant strains which have enhanced growth rate and floatation activity to reduce the recovery cost. A. platensis KCTC AG20590 was treated with 0.24% ethyl methanesulfonate (EMS) for 20 min at room temperature. The mutant strain A. platensis M20CJK3 was finally selected by its morphological and physiological features. The morphology of the mutant A. platensis M20CJK3 was changed from loose-coiled form to tight-coiled form showing short pitch. The growth and $CO_2$ uptake rate of A. platensis M20CJK3 were improved about 15% and 17% compared with A. platensis KCTC AG20590, respectively. The floatation activity of A. platensis M20CJK3 was enhanced in 2-fold compared with that of A. platensis KCTC AG20590. Soluble proteins extracted from two strains were analyzed by two dimensional electrophoresis (2-DE) and MALDI-TOF MS/MS. Among 15 protein spots induced in 2-DE analysis, two spots were the proteins related to photosynthesis and electron transfer system of the other cyanobacteria. As a consequence, it seems that the tight-coiled mutant A. platensis M20CJK3 has an advantage of high growth rate and floatation activity which are beneficial for the mass cultivation and recovery.

건강보조식품 등으로 이용되는 Arthrospira platensis는 세계적으로 대량생산되고 있으나 생산공정 중 수확단계에서 많은 비용이 소요된다. 본 연구에서는 부상을 이용한 효과적인 수확을 위해 균주의 개량을 시도하였으며, 개량균주의 생리적 물리적 특성을 파악하고자 하였다. Ethyl methanesulfonate (EMS)를 모균주 A. platensis KCTC AG20590에 0.24%의 농도로 10, 20, 30분씩 처리하여, 형태 및 부상성이 우수한 균주 A. platensis M20CJK3 균주를 분리하였다. A. platensis M20CJK3은 느슨한 형태에서 촘촘한 형태로 세포사(trichome)의 길이 및 코일간 간격이 감소하였으며, 생장 및 $CO_2$ 고정능이 각각 15%, 17% 향상되었다. 또한, 개량균주의 부상성은 모균주에 비해 2배 이상 향상되었다. 이차원 전기영동 분석을 통해 모균주와 개량균주의 단백질 발현양상을 비교분석한 결과 광합성 관련 색소의 구조와 광전자전달계에 관련된 단백질의 발현 양상이 차이를 보였다. 본 연구에서 개발된 A. platensis M20CJK3은 고밀도 대량배양 및 수확에 유리하며, A. platensis 유전자 연구의 유용한 모델 균주로 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. 김충재, 정윤호, 최강국, 박용하, 안치용, 오희목. 2006. Spirulina platensis의 옥외배양 최적화 및 오염생물 구제. Algae 21, 133-139 https://doi.org/10.4490/ALGAE.2006.21.1.133
  2. 안주희, 김성수, 김태호, 이준엽, 오상집, 이진하, 이현용. 1996. 축산 폐수의 효율적 처리를 위한 광합성 미세조류인 Spirulina platensis 배양 공정의 최적화. 산업미생물학회지 24, 519-524
  3. 오희목, 최애란, 민태익. 2003. 미세조류 유래 고부가 유용물질. 한국미생물·생명공학회지 31, 95-102
  4. 최강국, 배명숙, 박제섭, 박복준, 안치용, 오희목. 2007. Artrhrospira (Spirulina) platensis의 종속영양배양과 $\gamma$-linolenic acid 생산. 한국미생물.생명공학회지 35, 45-51
  5. Belay, A. 2002. The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. JANA 5, 27-48
  6. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  7. Choi, A.R., B.D. Yoon, H.S. Kim, and H.M. Oh. 2004. Growth and carbon fixation of cyanobacteria Spirulina platensis with different nitrogen source. Stud. Surf. Sci. Catal. 153, 581-584 https://doi.org/10.1016/S0167-2991(04)80320-3
  8. Fulda, S., F. Huang, F. Nilsson, M. Hagemann, and B. Norling. 2000. Proteomics of Synechocystis sp. strain PCC 6803. Eur. J. Biochem. 267, 5900-5907 https://doi.org/10.1046/j.1432-1327.2000.01642.x
  9. Gao, K., P. Li, T. Watanabe, and E.W. Helbling. 2008. Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis, and DNA of Arthrospira (Spirulina) platensis (cyanophyta). J. Phycol. 44, 777-786 https://doi.org/10.1111/j.1529-8817.2008.00512.x
  10. Geeta, G.S. and P.K. Singh. 2000. Isolation and characterization of amino acid-analogue-resistant mutants of Spirulina platensis. World J. Microbiol. Biotechnol. 16, 397-399 https://doi.org/10.1023/A:1008973016441
  11. Gudin, C. and H. Matsuyama. 1986. Bioconversion of solar energy into organic chemicals by microalgae. Adv. Biotechnol. Processes 6, 73-110
  12. Hongsthong, A., M. Sirijuntarut, P. Prommeenate, K. Lertladaluck, K. Porkaew, S. Cheevadhanarak, and M. Tanticharoen. 2008. Proteome analysis at the subcellular level of the cyanobacterium Spirulina platensis in response to low-temperature stress conditions. FEMS Microbiol. Lett. 288, 92-101 https://doi.org/10.1111/j.1574-6968.2008.01330.x
  13. Kim, S.G., A.R. Choi, C.Y. Ahn, C.S. Park, Y.H. Park, and H.M. Oh. 2005. Harvesting of Spirulina platensis by cellular floatation and growth stage determination. Lett. Appl. Microbiol. 40, 190-194 https://doi.org/10.1111/j.1472-765X.2005.01654.x
  14. Kim, S.G., C.S. Park, Y.H. Park, S.T. Lee, and H.M. Oh. 2004. Effect of $CO_2$ concentration on growth and photosynthesis of Spirulina platensis. Stud. Surf. Sci. Catal. 153, 295-298 https://doi.org/10.1016/S0167-2991(04)80267-2
  15. Kim, C.J., S.K. Yoon, H.I. Kim, Y.H. Park, and H.M. Oh. 2006. Effect of Spirulina platensis and probiotics as feed additive on growth shrimp Fenneropenaeus chinensis. J. Microbiol. Biotechnol. 16, 1248-1254
  16. Kurane, R. and H. Matsuyama. 1994. Production of a bioflocculant by mixed culture. Biosci. Biotechnol. Biochem. 58, 1589-1594 https://doi.org/10.1271/bbb.58.1589
  17. Padyana, A.K., V.B. Bhat, K.M. Madyastha, K.R. Rajashankar, and S. Ranajumar. 2001. Crystal structure of a light-harvesting protein c-phycocyanin from Spirulina platensis. Biochem. Biophy. Res. Comm. 282, 893-898 https://doi.org/10.1006/bbrc.2001.4663
  18. Pulz, O. 2001. Photobioreactors: production systems for phototrophic mciroorganisms. Appl. Microbiol. Biotechnol. 57, 287-293 https://doi.org/10.1007/s002530100702
  19. Rossi, N., M. Derouiniot-Chaplain, P. Jaouen, P. Legentilhomme, and I. Petit. 2008. Arthrospira platensis harvesting with membranes: fouling phenomenon with limiting and critical flux. Bioresour. Technol. 99, 6162-6167 https://doi.org/10.1016/j.biortech.2007.12.023
  20. Ruengjitchatchawalya, M., N. Chirasuwan, R. Chaiklahan, B. Bunnag, P. Deshnium, and M. Tanticharoen. 2002. Photosynthetic characterization of a mutant of Spirulina platensis. J. Appl. Phycol. 14, 71-76 https://doi.org/10.1023/A:1019571301041
  21. Sawaya, M.R., D.W. Krogmann, A. Serag, K.K. Ho, T.O. Yeates, and C.A. Kerfeld. 2001. Structure of cytochrome c-549 and cytochrome c6 from the cyanobacterium Arthrospira maxima. Biochem. 40, 9215-9225 https://doi.org/10.1021/bi002679p
  22. Soletto, D., L. Binaghi, L. Frrari, A. Lodi, J.C.M. Carvalho, M. Zilli, and A. Converti. 2008. Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor. Biochem. Engin. J. 39, 369-375 https://doi.org/10.1016/j.bej.2007.10.007
  23. Thomas, D.P., S.P. Bachmann, and J.L. Lopez-Ribot. 2006. Proteomics for the analysis of the Candida albicans biofilm lifestyle. Proteomics 6, 5795-5804 https://doi.org/10.1002/pmic.200600332
  24. Wang, Z.P. 2005. Morphological reversion of Spirulina (Arthrospira) platensis (cyanophyta): from linear to helical. J. Phycol. 41, 622-628 https://doi.org/10.1111/j.1529-8817.2005.00087.x
  25. Wu, H., K. Gao, V.E. Villafane, T. Watanabe, and E.W. Helbling. 2005. Effects of solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. Appl. Environ. Microbiol. 71, 5004-5013 https://doi.org/10.1128/AEM.71.9.5004-5013.2005
  26. Zilliges, Y., J.C. Kehr, S. Mikkat, C. Bouchier, N.T. Marsac, T. Börner, and E. Dittmann. 2008. An extracellular glycoprotein is implicated in cell-cell contacts in the toxic cyanobacterium Microcystis aeruginosa PCC $7806^\nabla$. J. Bacteriol. 190, 2871-2879 https://doi.org/10.1128/JB.01867-07