Browse > Article

A Mutant Arthrospira platensis M20CJK3 Showing Enhanced Growth Rate and Floatation Activity  

Yoo, Chan (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Choong-Jae (Institute of Construction Technology, Kumho Engineering & Construction)
Choi, Gang-Guk (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Ahn, Chi-Yong (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Choi, Jong-Soon (Proteome Analysis Team, Korea Basic Science Institute (KBSI))
Oh, Hee-Mock (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Korean Journal of Microbiology / v.45, no.3, 2009 , pp. 268-274 More about this Journal
Abstract
A photosynthetic cyanobacterium Arthrospira platensis, well known for health food supplement, was studied as a target species for atmospheric $CO_2$ removal as well as biomass production. Although the biomass of A. platensis was massively produced in many countries, the recovery cost of its biomass is still high. The purpose of this study was to develop the A. platensis mutant strains which have enhanced growth rate and floatation activity to reduce the recovery cost. A. platensis KCTC AG20590 was treated with 0.24% ethyl methanesulfonate (EMS) for 20 min at room temperature. The mutant strain A. platensis M20CJK3 was finally selected by its morphological and physiological features. The morphology of the mutant A. platensis M20CJK3 was changed from loose-coiled form to tight-coiled form showing short pitch. The growth and $CO_2$ uptake rate of A. platensis M20CJK3 were improved about 15% and 17% compared with A. platensis KCTC AG20590, respectively. The floatation activity of A. platensis M20CJK3 was enhanced in 2-fold compared with that of A. platensis KCTC AG20590. Soluble proteins extracted from two strains were analyzed by two dimensional electrophoresis (2-DE) and MALDI-TOF MS/MS. Among 15 protein spots induced in 2-DE analysis, two spots were the proteins related to photosynthesis and electron transfer system of the other cyanobacteria. As a consequence, it seems that the tight-coiled mutant A. platensis M20CJK3 has an advantage of high growth rate and floatation activity which are beneficial for the mass cultivation and recovery.
Keywords
Arthrospira; ethyl methanesulfonate; massive production; mutant; soluble protein;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 오희목, 최애란, 민태익. 2003. 미세조류 유래 고부가 유용물질. 한국미생물·생명공학회지 31, 95-102   과학기술학회마을
2 최강국, 배명숙, 박제섭, 박복준, 안치용, 오희목. 2007. Artrhrospira (Spirulina) platensis의 종속영양배양과 $\gamma$-linolenic acid 생산. 한국미생물.생명공학회지 35, 45-51   과학기술학회마을
3 Choi, A.R., B.D. Yoon, H.S. Kim, and H.M. Oh. 2004. Growth and carbon fixation of cyanobacteria Spirulina platensis with different nitrogen source. Stud. Surf. Sci. Catal. 153, 581-584   DOI
4 Gao, K., P. Li, T. Watanabe, and E.W. Helbling. 2008. Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis, and DNA of Arthrospira (Spirulina) platensis (cyanophyta). J. Phycol. 44, 777-786   DOI   ScienceOn
5 Sawaya, M.R., D.W. Krogmann, A. Serag, K.K. Ho, T.O. Yeates, and C.A. Kerfeld. 2001. Structure of cytochrome c-549 and cytochrome c6 from the cyanobacterium Arthrospira maxima. Biochem. 40, 9215-9225   DOI   ScienceOn
6 Soletto, D., L. Binaghi, L. Frrari, A. Lodi, J.C.M. Carvalho, M. Zilli, and A. Converti. 2008. Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor. Biochem. Engin. J. 39, 369-375   DOI   ScienceOn
7 Thomas, D.P., S.P. Bachmann, and J.L. Lopez-Ribot. 2006. Proteomics for the analysis of the Candida albicans biofilm lifestyle. Proteomics 6, 5795-5804   DOI   ScienceOn
8 Wu, H., K. Gao, V.E. Villafane, T. Watanabe, and E.W. Helbling. 2005. Effects of solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. Appl. Environ. Microbiol. 71, 5004-5013   DOI   ScienceOn
9 Kim, S.G., C.S. Park, Y.H. Park, S.T. Lee, and H.M. Oh. 2004. Effect of $CO_2$ concentration on growth and photosynthesis of Spirulina platensis. Stud. Surf. Sci. Catal. 153, 295-298   DOI
10 Fulda, S., F. Huang, F. Nilsson, M. Hagemann, and B. Norling. 2000. Proteomics of Synechocystis sp. strain PCC 6803. Eur. J. Biochem. 267, 5900-5907   DOI   ScienceOn
11 Padyana, A.K., V.B. Bhat, K.M. Madyastha, K.R. Rajashankar, and S. Ranajumar. 2001. Crystal structure of a light-harvesting protein c-phycocyanin from Spirulina platensis. Biochem. Biophy. Res. Comm. 282, 893-898   DOI   ScienceOn
12 Kim, C.J., S.K. Yoon, H.I. Kim, Y.H. Park, and H.M. Oh. 2006. Effect of Spirulina platensis and probiotics as feed additive on growth shrimp Fenneropenaeus chinensis. J. Microbiol. Biotechnol. 16, 1248-1254   과학기술학회마을   ScienceOn
13 김충재, 정윤호, 최강국, 박용하, 안치용, 오희목. 2006. Spirulina platensis의 옥외배양 최적화 및 오염생물 구제. Algae 21, 133-139   과학기술학회마을   DOI   ScienceOn
14 Kurane, R. and H. Matsuyama. 1994. Production of a bioflocculant by mixed culture. Biosci. Biotechnol. Biochem. 58, 1589-1594   DOI   ScienceOn
15 Kim, S.G., A.R. Choi, C.Y. Ahn, C.S. Park, Y.H. Park, and H.M. Oh. 2005. Harvesting of Spirulina platensis by cellular floatation and growth stage determination. Lett. Appl. Microbiol. 40, 190-194   DOI   ScienceOn
16 Zilliges, Y., J.C. Kehr, S. Mikkat, C. Bouchier, N.T. Marsac, T. Börner, and E. Dittmann. 2008. An extracellular glycoprotein is implicated in cell-cell contacts in the toxic cyanobacterium Microcystis aeruginosa PCC $7806^\nabla$. J. Bacteriol. 190, 2871-2879   DOI   ScienceOn
17 Geeta, G.S. and P.K. Singh. 2000. Isolation and characterization of amino acid-analogue-resistant mutants of Spirulina platensis. World J. Microbiol. Biotechnol. 16, 397-399   DOI   ScienceOn
18 안주희, 김성수, 김태호, 이준엽, 오상집, 이진하, 이현용. 1996. 축산 폐수의 효율적 처리를 위한 광합성 미세조류인 Spirulina platensis 배양 공정의 최적화. 산업미생물학회지 24, 519-524   과학기술학회마을
19 Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72, 248-254   DOI   PUBMED   ScienceOn
20 Rossi, N., M. Derouiniot-Chaplain, P. Jaouen, P. Legentilhomme, and I. Petit. 2008. Arthrospira platensis harvesting with membranes: fouling phenomenon with limiting and critical flux. Bioresour. Technol. 99, 6162-6167   DOI   ScienceOn
21 Ruengjitchatchawalya, M., N. Chirasuwan, R. Chaiklahan, B. Bunnag, P. Deshnium, and M. Tanticharoen. 2002. Photosynthetic characterization of a mutant of Spirulina platensis. J. Appl. Phycol. 14, 71-76   DOI   ScienceOn
22 Hongsthong, A., M. Sirijuntarut, P. Prommeenate, K. Lertladaluck, K. Porkaew, S. Cheevadhanarak, and M. Tanticharoen. 2008. Proteome analysis at the subcellular level of the cyanobacterium Spirulina platensis in response to low-temperature stress conditions. FEMS Microbiol. Lett. 288, 92-101   DOI   ScienceOn
23 Wang, Z.P. 2005. Morphological reversion of Spirulina (Arthrospira) platensis (cyanophyta): from linear to helical. J. Phycol. 41, 622-628   DOI   ScienceOn
24 Gudin, C. and H. Matsuyama. 1986. Bioconversion of solar energy into organic chemicals by microalgae. Adv. Biotechnol. Processes 6, 73-110
25 Pulz, O. 2001. Photobioreactors: production systems for phototrophic mciroorganisms. Appl. Microbiol. Biotechnol. 57, 287-293   DOI   PUBMED   ScienceOn
26 Belay, A. 2002. The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. JANA 5, 27-48