핫멜트 Web spray법을 이용한 고기능성 복합 화학필터의 제조 및 흡착특성

Preparation of High Performance Hybrid Chemical Filter using Hot Melt Adhesive by Web Spray and Their Adsorption Properties

  • 최용재 (충남대학교 바이오응용화학과) ;
  • 신경섭 (충남대학교 화학공학과) ;
  • 황택성 (충남대학교 바이오응용화학과)
  • Choi, Yong Jae (Department of Chemical & Biological Engineering, College of Engineering, Chungnam National University) ;
  • Shin, Kyoung Sub (Department of chemical Engineering, College of Engineering, Chungnam National University) ;
  • Hwang, Taek Sung (Department of Chemical & Biological Engineering, College of Engineering, Chungnam National University)
  • 투고 : 2009.06.03
  • 심사 : 2009.08.27
  • 발행 : 2009.09.30

초록

본 연구는 web spray 분사방식으로 핫멜트 접착제를 이용하여 high performance hybrid chemical filter (HPHCF)를 제조하였다. HPHCF은 이온교환 수지와 PP 부직포를 사용하였고, HPHCF의 제조 시 최적 조건은 핫멜트의 온도는 $170^{\circ}C$에서 분사압력은 50 psi일 때 최적의 제조 조건을 나타내었다. 제조된 HPHCF의 특성 및 암모니아 흡착성능을 측정하였다. HPHCF 이온교환용량은 수지 부착량이 증가함에 따라 증가하였으며 단일 수지와 이온교환섬유의 이온교환용량보다 크게 나타났다. 또한 암모니아의 제거율은 HPHCF의 충진 밀도가 증가할수록 증가하였으며 흡착 파과시간은 13 min으로 단일 섬유나 수지에 비해 길게 나타났고 최대 암모니아 흡착량은 98%이었다. 또한 암모니아 흡착 파과시간은 유량 및 농도가 증가함에 따라 빠르게 진행되었다.

In this study, the high performance hybrid chemical filter (HPHCF) was prepared by web spray using hot melt adhesive. The material of HPHCF was conditionally made of ion exchange resin and PP non-woven fabric. The optimum temperature and pressure for manufacturing of HPHCF conditions were such as $170^{\circ}C$ and 50 psi, respectively. The characteristics of preparated HPHCF and their adsorption properties of ammonia gas were investigated. The ion exchange capacity (IEC) of HPHCF was increased with increasing the resin contents and their values were higher than pure resin and ion exchange fabrics. The removal efficiency for ammonia gas increased with the increase of packing density of hybrid ion exchange fabrics in the column. It showed 13 min which the adsorption breakthrough time was slower than resin and fibers. The maximum value of adsorption for ammonia gas was 98 percent. And also, the velocity was increased with increasing concentration and flow rate of ammonia gas.

키워드

참고문헌

  1. J. Fritsch, O. F. Sankey, K. E. Schmidt, and J. B. Page, "Chemical Reactions of Ammonia with Polar and Non-polar Semiconductor Surfaces", Surf. Sci., 427, 298 (1999). https://doi.org/10.1016/S0039-6028(99)00293-9
  2. M. Sasaki, S. Sugawara, and S. Yamamoto, "Adsoprtion on to Compound Semiconductor Surfaces Studied by Pulsed Molecular-beam Scattering", Surf. Sci., 433, 811 (1999). https://doi.org/10.1016/S0039-6028(99)00491-4
  3. Y. C. Nho, J. L. Garnett, P. A. Dworganyn, J. Polym. Sci., 31, 163 (1993).
  4. J. S. Park, Y. C. Nho, and T. S. Hwang, Polymer (Korea), 21, 701 (1997).
  5. J. S. Park, Y. C. Nho, and J. H. Jin, Polymer (Korea), 22, 39 (1998).
  6. J. S. Park and Y. C. Nho, Polymer (Korea), 22, 47 (1998).
  7. J. Netting, "North Carolina Reflects on Ammonia Controls", Nature, 406, 928 (2000). https://doi.org/10.1038/35023319
  8. K. H. Kim, "Performance characterization of the GC/PFPD for H2S, CH3SH, DMS, and DMDS in air", Atmospheric Environment, 39(12), 2235 (2005). https://doi.org/10.1016/j.atmosenv.2004.12.039
  9. K. Sugasaka, S. Katoh, N. Taki, A. Takahashi, Y. Umezawa, Sep. Sci. Technol., 18(4) 307 (1983). https://doi.org/10.1080/01496398308068568
  10. V. S. Soldatov, G. I. Sergeev, and R. V. Martsinkevich, Dock. Akad. Nauk, USSR, 28, 1009 (1984).
  11. V. S. Soldatov, Izvest. Acad. Nauk BSSR, Chem. Ser., 6, 39, (1982).
  12. J. S. Kim, H. K. Park, S. D. Kim, H. S. Yu and K. I. Rhee, J. Kor. Inst. of Met. & Mater, 30, 600 (1992).
  13. C. S. Shin and T. H. Lee, J. Kor. Inst. Chem. Eng., 27, 588 (1989).
  14. T. Kawai, K. Saito, K. Sugita, T. Kawakami, J. Kanno, A. Katakai, N. Seko, and T. Sugo, Radi. Phys. and Chem., 59, 405 (2000). https://doi.org/10.1016/S0969-806X(00)00298-X