Lakatos의 증명과 반박 방법에 따른 기하 교수.학습 상황 분석 연구

A Research on the Teaching and Learning of Geometry Based on the Lakatos Proofs and Refutation Method

  • 발행 : 2009.03.31

초록

Lakatos 이론의 근저에 깔린 생각은 수학적 지식이 절대적이고 보편적이고 영원불변한 진리라기보다는 상대적이고 잠정적이며 오류가능성이 있다는 점이다. 수학사를 살펴보면 추측이 제기되어 일차적으로 증명되지만 그에 대한 반례가 나타나면서 증명이 개선되고 추측이 수정되는 예를 어렵지 않게 찾을 수 있다. 실제 이러한 Lakatos식의 증명과 반박의 과정은 수학자가 수학 지식을 창안할 때 뿐 아니라 학생들의 수학 교수 학습에 유용한 방법이 될 수 있다. 이에 본 연구는 Lakatos의 증명과 반박에 의한 교수 방법을 정리하고, 이에 대한 선행연구를 분석한 후, 중학교 수학 우수 학생들을 대상으로 하는 기하 교수 학습 상황에 Lakatos 이론을 적용하였다. 기하의 명제에서 패러독스를 유발시키는 원인을 찾고, 그 과정에서 발견한 성질을 추측으로 삼아 정당화하고 그 정당화가 기각되면서 새로이 증명되는 과정을 Lakatos 이론의 관점에서 분석하고 교육적 시사점을 도출하였다.

The purpose of this study is to implement Lakatos method in the teaching and learning of geometry for middle school students. In his landmark book , Lakatos suggested the following instructional approach: an initial conjecture was produced, attempts were made to prove the conjecture, the proofs were repeatedly refuted by counterexamples, and finally more improved conjectures and refined proofs were suggested. In the study, students were selected from the high achieving students who participated in the special mathematics and science program offered by the city council of Seoul. The students were given a contradictory geometric proposition, and expected to find the cause of the fallacy. The students successfully identified the fallacy following the Lakatos method. In this process they also set up a primitive conjecture and this conjecture was justified by the proof and refutation method. Some implications were drawn from the result of the study.

키워드