Microbial Modeling in Quantitative Risk Assessment for the Hazard Analysis and Critical Control Point (HACCP) System: A Review

  • Min, Sea-Cheol (Division of Food Science, Seoul Women's University) ;
  • Choi, Young-Jin (Department of Agricultural Biotechnology, Seoul National University)
  • 발행 : 2009.04.30

초록

Quantitative risk assessments are related to implementing hazard analysis and critical control points (HACCP) by its potential involvement in identifying critical control points (CCPs), validating critical limits at a CCP, enabling rational designs of new processes, and products to meet required level of safety, and evaluating processing operations for verification procedures. The quantitative risk assessment is becoming a standard research tool which provides useful predictions and analyses on microbial risks and, thus, a valuable aid in implementing a HACCP system. This paper provides a review of microbial modeling in quantitative risk assessments, which can be applied to HACCP systems.

키워드

참고문헌

  1. Hoornstra E, Northolt MD, Notermans S, Barendsz AW. The use of quantitative risk assessment in HACCP. Food Control 12: 229-234 (2001) https://doi.org/10.1016/S0956-7135(01)00019-6
  2. Duffy S, Schaffner DW. Modeling the survival of Escherichia coli O157:H7 in apple cider using probability distribution functions for quantitative risk assessment. J. Food Protect. 64: 599-605 (2001) https://doi.org/10.4315/0362-028X-64.5.599
  3. Frey HC, Patil S. Identification and review of sensitivity analysis methods. Risk Anal. 22: 553-578 (2002) https://doi.org/10.1111/0272-4332.00039
  4. CAC. Codex Alimentarius Commission. Guidelines for the application of the hazard analysis critical control point (HACCP) system. Food and Agriculture Organization, Rome, Italy (1993)
  5. Kaplan S, Garrick BJ. On the quantitative definition of risk. Risk Anal. 1: 11-27 (1981) https://doi.org/10.1111/j.1539-6924.1981.tb01350.x
  6. Min S, Min DB. The hazard analysis and critical control point (HACCP) system and its implementation in an aseptic thermal juice processing scheme: A review. Food Sci. Biotechnol. 15: 651-663 (2006)
  7. Whiting RC. Microbial modeling in foods. Crit. Rev. Food Sci. 35:467-494 (1995) https://doi.org/10.1080/10408399509527711
  8. Van Gerwen SJ, Zwietering MH. Growth and inactivation models to be used in quantitative risk assessments. J. Food Protect. 61: 1541-1549 (1998) https://doi.org/10.4315/0362-028X-61.11.1541
  9. Ross T, McMeekin TA. Predictive microbiology. Int. J. Food Microbiol. 23: 241-264 (1994) https://doi.org/10.1016/0168-1605(94)90155-4
  10. McElroy DM, Jaykus LA, Foegeding PM. Validation and analysis of modeled predictions of growth of Bacillus cereus spores in boiled rice. J. Food Protect. 63: 268-272 (2000) https://doi.org/10.4315/0362-028X-63.2.268
  11. Buchanan RL. Predictive food microbiology. Trends Food Sci. Tech. 4: 6-11 (1993) https://doi.org/10.1016/S0924-2244(05)80004-4
  12. Ross T, McMeekin TA. Modeling microbial growth within food safety risk assessments. Risk Anal. 23: 179-197 (2003) https://doi.org/10.1111/1539-6924.00299
  13. Zwietering MH, Jongenburger I, Rombouts FM, van 't Riet K. Modeling of the bacterial growth curve. Appl. Environ. Microb. 56:1875-1881 (1990)
  14. Gibson AM, Bratchell N, Roberts TA. The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. J. Appl. Bacteriol. 62:479-490 (1997)
  15. Zwietering MH, Rombouts FM, van't Riet K. Comparison of definitions of the lag phase and the exponential phase in bacterial growth. J. Appl. Bacteriol. 72: 139-145 (1992) https://doi.org/10.1111/j.1365-2672.1992.tb01815.x
  16. Baranyi J, Roberts TA. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 23: 277-294 (1994) https://doi.org/10.1016/0168-1605(94)90157-0
  17. Gibson AM, Bratchell N, Roberts TA. Predicting microbial growth:Growth responses of salmonellae in a laboratory medium as affected by pH, sodium chloride, and storage temperature. Int. J. Food Microbiol. 6: 155-178 (1988) https://doi.org/10.1016/0168-1605(88)90051-7
  18. Poschet F, Bernaerts K, Geeraerd AH, Scheerlinck N, Nicolai BM, Van Impe JF. Sensitivity analysis of microbial growth parameter distributions with respect to data quality and quantity by using Monte Carlo analysis. Math. Compt. Simulat. 65: 231-243 (2004) https://doi.org/10.1016/j.matcom.2003.12.002
  19. Cassin MH, Paoli GM, Lammerding AM. Simulation for microbial risk assessment. J. Food Protect. 61: 1560-1566 (1998) https://doi.org/10.4315/0362-028X-61.11.1560
  20. Coleman ME, Marks HM. Qualitative and quantitative risk assessment. Food Control 10: 289-297 (1999) https://doi.org/10.1016/S0956-7135(99)00052-3
  21. Nauta MJ. Separation of uncertainty and variability in quantitative microbial risk assessment. Int. J. Food Microbiol. 57: 9-18 (2000) https://doi.org/10.1016/S0168-1605(00)00225-7
  22. Danyluk MD, Harris LJ, Schaffner DW. Monte Carlo simulations assessing the risk of salmonellosis from consumption of almonds. J. Food Protect. 69: 1594-1599 (2006) https://doi.org/10.4315/0362-028X-69.7.1594
  23. USDA. Use of microbial pathogen computer modeling in HACCP plans. Available from: http://www.fsis.usda.gov/Regulations_&_Policies/Notice_25-05/index.asp. Accessed Nov. 18, 2008
  24. Ross T. Indices for performance evaluation of predictive models in food microbiology. J. Appl. Bacteriol. 81: 501-508 (1996)
  25. Nauta M. Modelling bacterial growth in quantitative microbial risk assessment: Is it possible? Int. J. Food Microbiol. 73: 297-304 (2002) https://doi.org/10.1016/S0168-1605(01)00664-X
  26. Baranyi J, Ross T, McMeekin TA, Roberts TA. Effects of parameterisation on the performance of empirical models used in 'Predictive Microbiology'. Food Microbiol. 13: 83-91 (1996) https://doi.org/10.1006/fmic.1996.0011
  27. Ratkowsky DA, Ross T, McMeekin TA, Olley J. Comparison of Arrhenius-type and Belehradek-type models for prediction of bacterial growth in foods. J. Appl. Bacteriol. 71: 452-459 (1991) https://doi.org/10.1111/j.1365-2672.1991.tb03816.x
  28. Min S, Harris LJ, Krochta JM. Inhibition of Salmonella enterica and Escherichia coli O157:H7 on roasted turkey by edible whey protein coatings incorporating the lactoperoxidase system. J. Food Protect. 69: 784-793 (2006) https://doi.org/10.4315/0362-028X-69.4.784
  29. Lambrecht PS, Carriere JF, Collins MT. A model for analyzing growth kinetics of a slowly growing Mycobacterium sp. Appl. Environ. Microb. 54: 910-916 (1988)
  30. Baranyi J, Roberts TA, McClure PJ. A non-autonomous differential equation to model bacterial growth. Food Microbiol. 10: 43-59 (1993) https://doi.org/10.1006/fmic.1993.1005
  31. Whiting RC, Cygnarowicz-Provost M. A quantitative model for bacterial growth and decline. Food Microbiol. 9: 269-277 (1992) https://doi.org/10.1016/0740-0020(92)80036-4
  32. Jones JE, Walker SJ. Advances in modelling microbial growth. J. Ind. Microbiol. 12: 200-205 (1993) https://doi.org/10.1007/BF01584191
  33. Ratkowsky DA, Lowry RK, McMeekin TA, Stokes AN, Chandler RE. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol. 154: 1222-1226 (1983)
  34. Ratkowsky DA. Principles of nonlinear regression modelling. J. Ind. Microbiol. Biot. 12: 195-199 (1993) https://doi.org/10.1007/BF01584190
  35. McMeekin TA, Ross T, Olley J. Application of predictive microbiology to assure the quality and safety of fish and fish products. Int. J. Food Microbiol. 15: 13-32 (1992) https://doi.org/10.1016/0168-1605(92)90132-M
  36. Zwietering MH, De Wit JC, Notermans S. Application of predictive microbiology to estimate the number of Bacillus cereus in pasteurised milk at the time of consumption. Int. J. Food Microbiol. 30: 55-70 (1996) https://doi.org/10.1016/0168-1605(96)00991-9
  37. Schoolfield RM, Sharpe PJH, Magnuson CE. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88: 719-731 (1981) https://doi.org/10.1016/0022-5193(81)90246-0
  38. Adair C, Kilsby DC, Whittall PT. Comparison of the Schoolfield non-linear Arrhenius model and the Square Root model for predicting bacterial growth in foods. Food Microbiol. 6: 7-18 (1989) https://doi.org/10.1016/S0740-0020(89)80033-4
  39. Davey KR. A predictive model for combined temperature and water activity on microbial growth during the growth phase. J. Appl. Bacteriol. 67: 483-488 (1989) https://doi.org/10.1111/j.1365-2672.1989.tb02519.x
  40. Davey KR. Applicability of the Davey linear Arrhenius predictive model to the lag phase of microbial growth. J. Appl. Bacteriol. 70:253-257 (1991) https://doi.org/10.1111/j.1365-2672.1991.tb02933.x
  41. Davey KR. Linear-Arrhenius models for bacterial growth and death and vitamin denaturation. J. Ind. Microbiol. 12: 172-179 (1993) https://doi.org/10.1007/BF01584187
  42. Kamau DN, Doores S, Pruitt KM. Enhanced thermal destruction of Listeria monocytogenes and Staphylococcus aureus by the lactoperoxidase system. Appl. Environ. Microb. 56: 2711-2716 (1990)
  43. Rodriguez AC, Smerage GH. System analysis of the dynamics of bacterial spore populations during lethal heat treatment. Trans. ASAE 39: 595-603 (1996) https://doi.org/10.13031/2013.27540
  44. Linton RH, Carter WH, Pierson MD, Hackney CR, Eifert JD. Use of a Gompertz equation to predict the effects of temperature, pH, NaCl on the inactivation of Listeria monocytogenes Scott A heated in infant formula. J. Food Protect. 59: 16-23 (1996) https://doi.org/10.4315/0362-028X-59.1.16
  45. Davey KR, Hall RF, Thomas CJ. Experimental and model studies of the combined effect of temperature and pH on the thermal sterilization of vegetative bacteria in liquid. Food Bioprod. Process. 73C: 127-132 (1995)
  46. Juneja VK, Marmer BS, Phillips JG, Miller AJ. Influence of the intrinsic properties of food on thermal inactivation of spores of nonproteolytic Clostridium botulinum: development of a predictive model. J. Food Safety 15: 349-364 (1995) https://doi.org/10.1111/j.1745-4565.1995.tb00145.x
  47. Lindroth S, Benigeorgis C. Probability of growth and toxin production by nonproteolytic Clostridium botulinum in rock fish stored under modified atmospheres. Int. J. Food Microbiol. 3: 167-181 (1986) https://doi.org/10.1016/0168-1605(86)90012-7
  48. Whiting RC, Call JE. Time of growth for proteolytic Clostridium botulinum. Food Microbiol. 10: 295-301 (1993) https://doi.org/10.1006/fmic.1993.1034
  49. Cullen AC, Frey HC. Probabilistic Techniques in Exposure Assessment. Plenum Press, New York, NY, USA. p. 352 (1999)
  50. Neter J, Kutner MH, Nachtsheim CJ, Wasserman W. Applied Linear Statistical Models. McGraw-Hill, Chicago, IL, USA. p. 1396 (2004)
  51. Montgomery DC. Design and Analysis of Experiments. Wiley and Sons Ltd., New York, NY, USA. p. 256 (1997)
  52. Khuri AJ, Cornell JA. Response Surfaces. Marcel Dekker, Inc., New York, NY, USA. p. 536 (1987)
  53. Galvao LS, Pizarro MA, Epiphanio JCN. Variations in reflectance of tropical soils: Spectral-chemical composition relationships from AVIRIS data. Remote Sens. Environ. 75: 245-255 (2001) https://doi.org/10.1016/S0034-4257(00)00170-X