Highly Fluorescing Solid DNA-Cationic Polyelectrolyte Complexes Prepared from a Natural DNA and a Poly(fluorenevinylene-alt-phenylene) Bearing Quaternary Ammonium Pendants

  • Yu, Young-Jun (Department of Chemistry and Center for Advanced Materials Chemistry, Korea University) ;
  • Kwon, Young-Wan (Department of Chemistry and Center for Advanced Materials Chemistry, Korea University) ;
  • Kim, Kyu-Nam (Department of Chemistry and Center for Advanced Materials Chemistry, Korea University) ;
  • Do, Eui-Doo (Department of Chemistry and Center for Advanced Materials Chemistry, Korea University) ;
  • Choi, Dong-Hoon (Department of Chemistry and Center for Advanced Materials Chemistry, Korea University) ;
  • Jin, Jung-Il (Department of Chemistry and Center for Advanced Materials Chemistry, Korea University) ;
  • Shin, Hee-Won (Department of Chemistry, Yonsei University) ;
  • Kim, Yong-Rok (Department of Chemistry, Yonsei University) ;
  • Kang, Ik-Joong (Department of Chemical and Bio Engineering, Kyungwon University) ;
  • Mikroyannidis, John A. (Chemical Technology Laboratory, Department of Chemistry, University of Patras)
  • Published : 2009.04.25

Abstract

A fluorescing, copolymer(Q)-bearing, quaternary ammonium pendant was mixed with excess natural salmon sperm DNA with a molecular weight of $1.3{\times}10^6$(2,000 base pairs) to afford highly fluorescing, complex mixtures. The fluorescence life-time of the polymer Q was greatly increased when mixed with DNA: for the mixture of Q:DNA=1:750 the fast and slow decay lifetimes increased from ca. 10 to 100 ps and from 20 ps to ca. 1 ns, respectively. The enhanced fluorescence of the mixtures was ascribed to efficient compartmentalization and reduced conformational relaxation of the polymer Q by complexation with excess DNA.

Keywords

References

  1. T. Liedl, T. L. Sobey, and F. C. Simmel, Nano Today, 2, 36 (2007) https://doi.org/10.1016/S1748-0132(07)70057-9
  2. E. Palecek and M. Fojta, in Bioelectronics, I. Willner and E. Katz, Eds., Wiley-VCH, Weinheim, Germany, 2005, pp. 127-192
  3. C. M. Niemeyer, W. Burger, and J. Peplies, Angew. Chem. Int. Ed., 37, 2265 (1998) https://doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2265::AID-ANIE2265>3.0.CO;2-F
  4. C. M. Niemeyer, Angew. Chem. Int. Ed., 40, 4128 (2001) https://doi.org/10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S
  5. N. C. Seeman, Nature, 421, 427 (2003) https://doi.org/10.1038/nature01406
  6. Y. W. Zhang and N. C. Seeman, J. Am. Chem. Soc., 116, 1661 (1994) https://doi.org/10.1021/ja00084a006
  7. H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean, Science, 301, 1882 (2003) https://doi.org/10.1126/science.1089389
  8. K. Lund, Y. Liu, S. Lindsay, and H. Yan, J. Am. Chem. Soc., 127, 17606 (2005) https://doi.org/10.1021/ja0568446
  9. L. M. Adleman, Science, 266, 1021 (1994) https://doi.org/10.1126/science.7973651
  10. R. S. Braich, N. Chelyapov, C. Johnson, P. W. K. Rothemund, and L. Adleman, Science, 296, 499 (2002) https://doi.org/10.1126/science.1069528
  11. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature, 382, 607 (1996) https://doi.org/10.1038/382607a0
  12. A. P. Alivisatos, K. P. Johnsson, X. G. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, and P. G. Schultz, Nature, 382, 609 (1996) https://doi.org/10.1038/382609a0
  13. E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, Nature, 391, 775 (1998) https://doi.org/10.1038/35826
  14. J. Richter, R. Seidel, R. Kirsch, M. Mertig, W. Pompe, J. Plaschke, and H. K. Schackert, Adv. Mater., 12, 507 (2000) https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<507::AID-ADMA507>3.0.CO;2-G
  15. R. G. Endres, D. L. Cox, and R. R. P. Singh, Rev. Modern Phys., 76, 195 (2004) https://doi.org/10.1103/RevModPhys.76.195
  16. J. S. Hwang, S. H. Hong, H. K. Kim, Y.-W. Kwon, J.-I. Jin, S. W. Hwang, and D. Ahn, Jpn. J. Appl. Phys., 44, 2623 (2005) https://doi.org/10.1143/JJAP.44.2623
  17. C. H. Lee, Y.-W. Kwon, E. D. Do, D. H. Choi, J.-I. Jin, D. K. Oh, and J. Kim, Phys. Rev. B, 73, 224417 (2006) https://doi.org/10.1103/PhysRevB.73.224417
  18. C. H. Lee, E.-D. Do, Y.-W. Kwon, D. H. Choi, J.-J. Jin, D.-K. Oh, H. Nishide, and T. Kurata, Nonlinear Opt. Quantum Opt., 35, 165 (2006)
  19. Y.-W. Kwon, C. H. Lee, E.-D. Do, D. H. Choi, J.-I. Jin, J. S. Kang, and E.-K. Koh, Bull. Korean Chem. Soc., 29, 1233 (2008) https://doi.org/10.5012/bkcs.2008.29.6.1233
  20. K. Mizoguchi, S. Tanaka, T. Ogawa, N. Shiobara, and H. Sakamoto, Phys. Rev. B, 72, 033106 (2005) https://doi.org/10.1103/PhysRevB.72.033106
  21. K. Mizoguchi, S. Tanaka, and H. Sakamoto, Phys. Rev. Lett., 96, 089801 (2006) https://doi.org/10.1103/PhysRevLett.96.089801
  22. J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, M. O. Stone, and L. R. Dalton, Mol. Cryst. Liq. Cryst., 426, 3 (2005) https://doi.org/10.1080/15421400590890615
  23. Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, Adv. Mater., 12, 1281 (2000) https://doi.org/10.1002/1521-4095(200009)12:17<1281::AID-ADMA1281>3.0.CO;2-0
  24. A. J. Steckl, Nat. Photonics, 1, 3 (2007) https://doi.org/10.1038/nphoton.2006.56
  25. Y. Okahata, T. Kobayashi, K. Tanaka, and M. Shimomura, J Am. Chem. Soc., 120, 6165 (1998) https://doi.org/10.1021/ja980165w
  26. H. A. Ho, M. Bera-Aberem, and M. Leclerc, Chem. Eur. J., 11, 1718 (2005) https://doi.org/10.1002/chem.200400537
  27. B. Liu and G. C. Bazan, Chem. Mater., 16, 4467 (2004) https://doi.org/10.1021/cm049587x
  28. B. Liu, B. S. Gaylord, S. Wang, and G. C. Bazan, J. Am. Chem. Soc., 125, 6705 (2003) https://doi.org/10.1021/ja028961w
  29. A. Furstenberg, M. D. Julliard, T. G. Deligeorgiev, N. I. Gadjev, A. A. Vasilev, and E. Vauthey, J. Am. Chem. Soc., 128, 7661 (2006) https://doi.org/10.1021/ja0609001
  30. J. A. Mikroyannidis and V. P. Barberis, J. Polym. Sci. A, 45, 1481 (2007) https://doi.org/10.1002/pola.21918
  31. B. S. Kim, K. D. Suh, and B. Kim, Macromol. Res., 16, 76 (2008) https://doi.org/10.1007/BF03218966
  32. M. S. Park, T. H. Lim, Y. M. Jeon, J. G. Kim, M. S. Gong, and S. W. Joo, Macromol. Res., 16, 308 (2008) https://doi.org/10.1007/BF03218522
  33. S. D. Tuong, H. Lee, and H. Kim, Macromol. Res., 16, 373 (2008) https://doi.org/10.1007/BF03218531
  34. H. W. Shin, E. J. Shin, S. Y. Cho, S. L. Oh, and Y. R. Kim, J. Phys. Chem. C, 111, 15391 (2007) https://doi.org/10.1021/jp074203m
  35. M. Daniels, in Physico-chemical Properties of Nucleic Acids, J. Duchesne, Ed., Academic Press, London, U. K., 1973, pp. 99-117
  36. J. Eisinger, A. A. Lamola, J. Longwort, and W. B. Gratzer, Nature, 226, 113 (1970) https://doi.org/10.1038/226113a0