Synthesis of High Molecular Weight 3-Arm Star PMMA by ARGET ATRP

  • Jeon, Hyun-Jeong (Department of Advanced Fiber Engineering, Division of Nano-Systems, Inha University) ;
  • Youk, Ji-Ho (Department of Advanced Fiber Engineering, Division of Nano-Systems, Inha University) ;
  • Ahn, Sung-Hee (Cheil Industries Inc.) ;
  • Choi, Jin-Hwan (Cheil Industries Inc.) ;
  • Cho, Kwang-Soo (Department of Polymer Science and Engineering, Kyungpook National University)
  • Published : 2009.04.25

Abstract

High molecular weight(MW), 3-arm star poly(methyl methacrylate)(PMMA) with a narrow MW distribution($M_n$=570,000 g/mol, PDI=1.36) was successfully synthesized by activators regenerated by electron transfer(ARGET) atom transfer radical polymerization(ATRP). The polymerization was carried out with a trifunctional initiator/$CuBr_2$/N,N,N',N",N"-pentamethyldiethy lenetriamine(PMDETA) initiator/catalyst system in the presence of a tin(II) 2-ethylhexanoate [$Sn(EH)_2$] reducing agent at $90^{\circ}C$. The concentration of the copper catalyst was as low as 30 ppm, and a high initiation efficiency of the initiating sites was obtained. The chain-end functionality of the high MW, 3-arm star PMMA was confirmed by a chain extension experiment with styrene via ARGET ATRP, using the same catalyst system.

Keywords

References

  1. K. Matyjaszewski and J. Xia, Chem. Rev., 101, 2921 (2001) https://doi.org/10.1021/cr940534g
  2. Y. Gnanou and G. Hizal, J. Polym. Sci. Part A: Polym. Chem., 42, 351 (2004) https://doi.org/10.1002/pola.11003
  3. G. Hizal, U. Tunca, S. Aras, and H. Mert, J. Polym. Sci. Part A: Polym. Chem., 44, 77 (2006) https://doi.org/10.1002/pola.21048
  4. H. Tang, N. Arulsamy, M. Radosz, Y. Shen, N. V. Tsarevsky, W. A. Braunecker, W. Tang, and K. Matyjaszewski, J. Am. Chem. Soc., 128, 16277 (2006) https://doi.org/10.1021/ja0653369
  5. W. Jakubowski, K. Min, and K. Matyjaszewski, Macromolecules, 39, 39 (2006) https://doi.org/10.1021/ma0522716
  6. H. Dong, W. Tang, and K. Matyjaszewski, Macromolecules, 40, 2974 (2006) https://doi.org/10.1021/ma070424e
  7. J. Pietrasik, H. Dong, and K. Matyjaszewski, Macromolecules, 39, 6384 (2006) https://doi.org/10.1021/ma0611927
  8. W. Jakubowski, B. Kirci-Denizli, R. R. Gil, and K. Matyjaszewski, Macromol. Chem. Phys., 206, 32 (2008)
  9. L. Xue, U. S. Agarwal, and P. J. Lemstra, Macromolecules, 35, 8650 (2002) https://doi.org/10.1021/ma020905s
  10. L. Xue, U. S. Agarwal, M. Zhang, B. B. P. Staal, A. H. E. Muller, C. M. E. Bailly, and P. J. Lemstra, Macromolecules, 38, 2093 (2005) https://doi.org/10.1021/ma0484936
  11. H. J. Jeon, W.-J. Jin, E. H. Jeong, J. H. Hong, S. H. Ahn, J. H. Choi, K. S. Cho, and J. H. Youk, Polymer Preprint, 47, 473 (2006)
  12. B. W. Mao, L. H. Gan, and Y. Y. Gan, Polymer, 47, 3017 (2006) https://doi.org/10.1016/j.polymer.2006.03.021
  13. N. Hadjichristidis, M. Pitsikalis, S. Pispas, and H. Iatrou, Chem. Rev., 101, 3747 (2001) https://doi.org/10.1021/cr9901337
  14. G. Klaerner, M. Petro, D. Charmot, and D. Benoit, US Patent 7,259,217 (2007)
  15. X.-Z. Wang, H.-L. Zhang, D.-C. Shi, J.-F. Chen, X.-Y. Wang, and Q.-F. Zhou, Eur. Polym. J., 41, 933 (2005) https://doi.org/10.1016/j.eurpolymj.2004.11.015