DOI QR코드

DOI QR Code

Expression of tissue-type plasminogen activator and its derivative proteins in transgenic alfalfa plants

조직형 플라스미노겐 액티베이터와 관련 변이 단백질들을 발현하는 알팔파 형질전환체

  • Sim, Joon-Soo (National Academy of Agricultural Science, Rural Development Administration) ;
  • Rhee, Yong (National Academy of Agricultural Science, Rural Development Administration) ;
  • Ko, Hyo-Rim (National Academy of Agricultural Science, Rural Development Administration) ;
  • Pak, Hyo-Kyung (National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Hyeong-Mi (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lim, Kyu-Hee (National Academy of Agricultural Science, Rural Development Administration) ;
  • An, Ki-Seong (National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Yong-Hwan (National Academy of Agricultural Science, Rural Development Administration) ;
  • Hahn, Bum-Soo (National Academy of Agricultural Science, Rural Development Administration)
  • 심준수 (농촌진흥청 국립농업과학원) ;
  • 이용 (농촌진흥청 국립농업과학원) ;
  • 고효림 (농촌진흥청 국립농업과학원) ;
  • 박효경 (농촌진흥청 국립농업과학원) ;
  • 김형미 (농촌진흥청 국립농업과학원) ;
  • 임규희 (농촌진흥청 국립농업과학원) ;
  • 안기성 (농촌진흥청 국립농업과학원) ;
  • 김용환 (농촌진흥청 국립농업과학원) ;
  • 한범수 (농촌진흥청 국립농업과학원)
  • Published : 2009.03.31

Abstract

Tissue-type plasminogen activator (t-PA) is a thrombolytic agent important in fibirn clot lysis. T-PA causes fibirn-specific plasminogen activation. Six binary vectors harboring t-PA and its derivative genes were cloned and expressed in transgenic alfalfa plants. The insertion of the t-PA and its derivative genes in genomic DNA of alfalfa plants was confirmed by PCR. The presence of the t-PA and its derivative transcripts in total RNAs of the transgenic alfalfa leaves was verified by RT-PCR. ELISA experiments demonstrated that the highest level of recombinant t-PA expression was $75.1{\mu}g$/ total soluble protein (mg) in alfalfa plants. The amount of recombinant t-PA and its derivative proteins in transgenic plants was estimated to range from 9.7 to $39.5{\mu}g$/ total soluble proteins (mg). Western blot analysis of the transformed alfalfa leaves revealed bands of approximately 68-kDa recombinant t-PA and its derivative proteins. The fibrinolysis of recombinant t-PA and its derivative proteins was confirmed by a fibrin plate assay (range from 3.2 to 8.1 cm). The results presented provide information for the development of an additional production of recombinant human proteins having pharmaceutical applications using transgenic plants.

의료용 단백질로 중요한 인체 혈관 내피세포 유래 t-PA를 알팔파 식물체를 이용하여 생산하는 기술을 개발하였다. 식물체에서 발현된 t-PA는 동물세포에서 생산된 t-PA와 동등한 시험관 내의 인공 혈전 용해 활성 및 생화학적 특성에서 유사함을 가지고 있었다. 본 연구에서는 식물체에서 발현되는 t-PA 단백질의 알팔파 코돈 이용에 최적화된 합성 유전자이용 양적 증대, 소포체에 표적에 따른 발현양 증대, 6개의 histidine의 부착에 따른 정제의 효율성을 고려하였고 두 종류의 프로모터 (CaMV 35S와 알팔파 Rbcsk-1A)를 이용하여 t-PA 및 파생 단백질들의 발현 효율을 비교 확인하고자 6가지의 식물발현 벡터를 제작하였다. 0.3%의 제초제 살포 후에 저항성을 갖는 알팔파 식물체들의 t-PA 유전자 및 파생 유전자의 genomic DNA내의 삽입 유무는 PCR법을 활용하여 t-PA, 파생 유전자 및 합성 유전자의 크기에 해당하는 1.6 kb의 PCR 산물을 확인 할 수 있었다. 6가지 발현벡터로 형질전환된 알팔파 잎 추출물에서 전체 수용성 단백질내의 t-PA 및 파생 단백질의 평균 발현양은 $9.7-39.5{\mu}g/TSP$ (mg)로 측정되었다. 이중 p221a-t-PAER 발현벡터로 형질전환된 알팔파의 잎 추출물에서 가장 높은 $75.1{\mu}g/TSP$(mg)의 발현양을 나타났다. 알팔파 잎에 발현된 재조합 t-PA 분자량은 상업적으로 판매되는 t-PA와 동일한 68 kDa으로 확인되었다. 형질전환된 알팔파 잎 추출물들의 평균 피브린 용해활성은 3.2-8.1cm를 나타내었다. 또한 t-PA 및 그의 파생 단백질을 발현하는 알팔파 식물체는 야생종 알팔파와 비교했을 때 성장에 있어서 별 다른 차이를 보이지 않았다.

Keywords

References

  1. Almquist KC, McLean MD, Niu Y, Byrne G, Olea-Popelka FC,Murrant C, Barclay J, Hall JC (2006) Expression of an antibotulinum toxin A neutralizing single-chain Fv recombinant antibody in transgenic tobacco. Vaccine 24:2079-2086 https://doi.org/10.1016/j.vaccine.2005.11.014
  2. Astrup T, Mullertz S (1952) The fibrin plate method for estimating of fibrinolytic activity. Arch Biochem Biophys 40:346-351 https://doi.org/10.1016/0003-9861(52)90121-5
  3. Austin S, Bingham ET, Mathews DE, Shahan MN, Will J, Burgess RR (1995) Production and field performance of transgenic alfalfa (Medicago sativa L.) expressing alpha-amylase and manganese dependent lignin peroxidase. Euphytica 85(1-3):381-393 https://doi.org/10.1007/BF00023971
  4. Barta A, Sommengruber K, Thompson D, Hartmuth K, Matzke M, Matzke A (1986) The expression of a napoline synthase human growth hormone chimeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol 6:347-357 https://doi.org/10.1007/BF00034942
  5. Benchabane M, Goulet C, Rivard D, Faye L, Gomord V, Michaud D (2008) Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnology J 6:633-648 https://doi.org/10.1111/j.1467-7652.2008.00344.x
  6. Brodzik R, Banduiska K, Deka D, Golovkin M, Koprowski H (2005) Advances in alfalfa mosaic virus-mediated expression of anthrax antigen in planta. Biochem Biophys Res Commun 338:717-722 https://doi.org/10.1016/j.bbrc.2005.09.196
  7. Christou P, Stoger E, Twyman RM (2004) Monocot expression systems for molecular farming. Fischer R, Schillberg S (eds), In Molecular Farming: Plant-Made Pharmaceuticals and Technical Proteins, Wiley-VCH, Weinheim, Germany, pp 55-67
  8. Collen D, Lijnen HR (2004) Tissue-type plasminogen activator: a histohcal perspective and personal account. J Thromb Haemost 2:541-546 https://doi.org/10.1111/j.1538-7933.2004.00645.x
  9. Ebert KM, Selgrath JP, DiTullio P, Denman J, Smith TE, Memon MA, Schindler JE, Monastersky GM, Vitale JA, Gordon K (1991) Transgenic production of a variant of human tissue-type plasminogen activator in goat milk: generation of transgenic goats and analysis of expression. Biotechnology (NY) 9: 835-838 https://doi.org/10.1038/nbt0991-835
  10. Einsiedel EF, Medlock J (2005) A public consultation on plant molecular farming. AgBioForum 8:26-32
  11. Hahn BS, Sim JS, Kim HM, Ahn MY, Pak HK, Kim NA, Kim YH (2009) Expression and characterization of human tissue-plasminogen activator in transgenic tobacco plants. Plant Mol Biol Rep DOI 10.1007/s11105-008-0075-y
  12. Horn ME, Woodard SL, Howard JA (2004) Plant molecular farming: systems and products. Plant Cell Rep 22:711-720 https://doi.org/10.1007/s00299-004-0767-1
  13. Howard JA, Hood E (2005) Bio-industrial and biopharmaceutical products produced in plants. Adv Agron 85:91-123 https://doi.org/10.1016/S0065-2113(04)85002-8
  14. Kapusta J, Madelska A, Figlerowicz M, Pniewski T, Letellier M, Lisowa O, Yusibov V, Koprowski H, Plucienniczak A, Legocki AB (1999) A plant-derived edible vaccine against hepatitis B virus. FASEB J 13:1796-1799 https://doi.org/10.1096/fasebj.13.13.1796
  15. Karasev AV, Foulke S, Wellens C, Rich A, Shon KJ, Zwierzynski I, Hone D, Kopnwski H, Reitz M (2005) Plant based HIV-l vaccine candidate: Tat protein produced in spinach. Vaccine 23:1875-1880 https://doi.org/10.1016/j.vaccine.2004.11.021
  16. Keyt BA, Paoni NF, Refino CJ, Berleau L, Nguyen H, Chow A, Lai J, Pena L, Pater C, Ogez J, Etcheverry T, Botstein D, Bennet WF (1994) A faster-acting and more potent form of tissue Plasminogen activator. Proc Natl Acad Sci USA 91:3670-3674 https://doi.org/10.1073/pnas.91.9.3670
  17. Khalsa G, Mason HS, Arntzen CJ (2004) Plant-derived vaccines: progress and constrains. Fischer R, Schillberg S (eds), In Molecular Farming: Plant-Made Pharmaceuticals and Technical Proteins, Wiley-VCH, Weinheim, Germany, pp 135-158
  18. Kim JY, Fogarty EA, Lu FJ, Zhu H, Wheelock GD, Henderson LA, DeLisa MP (2005) Twin-arginine translocation of active human tissue plasminogen activator in Escherichia coli. Appl Environ Microbiol 71:8451-8459 https://doi.org/10.1128/AEM.71.12.8451-8459.2005
  19. Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K, Lehner T (1995) Generation and assembly of Secretory antibodies in plants. Science 268:716-719 https://doi.org/10.1126/science.7732380
  20. Ma JK, Hikmat BY, Wycoff K, Vine ND, Chargelegue D, Yu L, Hein MB, Lehner T (1998) Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med 4:601-606 https://doi.org/10.1038/nm0598-601
  21. Manosroi J, Tayapiwatana C, Gotz F, Werner RG, Manosroi A (2001) Secretion of active recombinant human tissue plasminogen activator derivatives in Escherichia coli. Appl Environ Microbiol 67:2657-2664 https://doi.org/10.1128/AEM.67.6.2657-2664.2001
  22. Matsuo O, Rijken DC, Collen D (1981) Thrombolysis by human tissue plasminogen activator and urokinase in rabbits with experimental pulmonary embolus. Nature 291(5816):590-591 https://doi.org/10.1038/291590a0
  23. Outchkourov NS, Rogelj B, Strukelj B, Jongsma MA (2003) Expre ssion ofsea anemone equistatin in potato. Effects of plant Proteases on heterologous protein production. Plant Physiol 133:379-390 https://doi.org/10.1104/pp.102.017293
  24. Pan L, Zhang Y, Wang Y, Wang B, Wang W, Fang Y, Jiang S, Lv J, Wang W, Sun Y, Xie Q (2008) Foliar extracts from transgenic tomato plants expressing the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease virus elicit a protective response in guinea pigs. Vet Immunol Immunopathol 121:83-90 https://doi.org/10.1016/j.vetimm.2007.08.010
  25. Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA, Ward CA, Bennett WF, Yelverton E, Seeburg PH, Heyneker HL, Goeddel DV, Collen D (1983) Cloning and expression of human tissue type plasminogen activator cDNA in E. coli. Nature 301(5897):214-221 https://doi.org/10.1038/301214a0
  26. Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, Produced in transgenic plants. Science 256:520-523 https://doi.org/10.1126/science.256.5056.520
  27. Pittius CW, Hennighausen L, Lee E, Westphal H, Nicols E, Vitale J, Gordon K (1998) A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice. Proc Natl Acad Sci USA 85:5874-5878 https://doi.org/10.1073/pnas.85.16.5874
  28. Pujol M, Ramirrez NI, Ayala M, Gavilondo JV, Valdes R, Rodriguez M, Brito J, Padilla S, Gomez L, Reyes B, Peral R, Perez M, Marcelo JL, Mila L, Sanchez RF, Rolando P, Crerrata JA, Enriquez G, Mendoza O, Ortega M, Borroto C (2005) An integral approach towards a practical application for a plant-made monoclonal antibody in vaccine purification. Vaccine 23:1833-1837 https://doi.org/10.1016/j.vaccine.2004.11.023
  29. Scheller J, Henggeler D, Viviani A, Conrad U (2004) Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res 13:51-57 https://doi.org/10.1023/B:TRAG.0000017175.78809.7a
  30. Stevens LH, Stoopen GM, Elbers IJ, Molthoff JW, Bakker HA, Lommen A, Bosch D, Jordi W (2000) Effect of climate conditions and plant developmental stage on the stability of antibodies expressed in transgenic tobacco. Plant Physiol 124:173-182 https://doi.org/10.1104/pp.124.1.173
  31. Tate KM, Higgins DL, Holmes WE, Winkler ME, Heyneker HL, Vehar GA (1987) Functional role of proteolytic cleavage at arginine-275 of human tissue plasminogen activator as assessed by site directed mutagenesis. Biochemistry 26:338-343 https://doi.org/10.1021/bi00376a002
  32. Webster DE, Smith SD, Pickering RJ, Strugnell RA, Dry IB, Wesse lingh, SL (2006) Measles virus hemagglutinin protein expressed in transgenic lettuce induces neutralising antibodies in mice following mucosal vaccination. Vaccine 24:3538-3544 https://doi.org/10.1016/j.vaccine.2006.02.002
  33. Woodard SL, Mayor JM, Bailey MR, Barker DK, Love RT, Lane JR, Delaney DE, McComas-Wagner JM, Mallubhotla HD, Hood EE, Dangott LJ, Tichy SE, Howard JA (2003) Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commer cial protein product from transgenic plants. Biotechnol Appl Biochem 38:123-130 https://doi.org/10.1042/BA20030026