DOI QR코드

DOI QR Code

Functional characterization of a CCCH type zinc-finger protein gene OsZF2 by ectopic overexpression of the gene in rice

과발현 형질전환벼에서 CCCH type zinc-finger protein 유전자 OsZF2 기능 분석

  • Lee, Jung-Sook (National Academy of Agricultural Science, Rural Development Administration) ;
  • Yoon, In-Sun (National Academy of Agricultural Science, Rural Development Administration) ;
  • Yoon, Ung-Han (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Gang-Seob (National Academy of Agricultural Science, Rural Development Administration) ;
  • Byun, Myung-Ok (National Academy of Agricultural Science, Rural Development Administration) ;
  • Suh, Seok-Chul (National Academy of Agricultural Science, Rural Development Administration)
  • 이정숙 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 윤인선 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 윤웅한 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 이강섭 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 변명옥 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 서석철 (농촌진흥청 국립농업과학원 농업생명자원부)
  • Published : 2009.03.31

Abstract

We have previously isolated a CCCH type zinc-finger protein gene, OsZF2 (Oryza sativa Zinc Finger 2), from the cold-treated rice cDNA library. To investigate the potential role of OsZF2, transgenic rice lines over-expressing OsZF2 under the control of CaMV 35S promoter have been developed through Agrobacterium-mediated transformation. Elevated level of OsZF2 transcripts was confirmed by RNA gel blot analysis in transgenic rice. Under the 100 mM NaCl condition, the transgenic rice showed significantly enhanced growth rate in terms of shoot length and fresh weight, implicating that OsZF2 is likely to be involved in salt response of rice. In the field condition, however, the transgenic rice showed a dwarf phenotype and flowering time was delayed. Genome expression profiling analysis of transgenic plants using the 20K NSF rice oligonucleotide array revealed many up-regulated genes related to stress responses and signaling pathways such as chaperone protein dnaJ 72, salt stress-induced protein, PR protein, disease resistance proteins RPM1 and Cf2/Cf5 disease resistance protein, carbohydrate/ sugar transporter, OsWAK kinase, brassinosteroid LRR receptor kinase, and jasmonate O-methyltransferase. These data suggest that the CCCH type zinc-finger protein OsZF2 is a upstream transcriptional factor regulating growth and stress responsiveness of rice.

벼의 저온처리 cDNA 은행에서 분리된 CCCH 형태 zinc finger 단백질인 OsZF2의 기능을 분석하기 위하여 벼에서 CaMV 35S 프로모터 조절하에 OsZF2가 발현(35S:OsZF2)되는 형질전환벼 식물체를 개발하였다. 35S:OsZF2 형질전환벼에 대한 하이그로 마이신저항성 검정을 통해 동형접합체 계통을 선발하고 Northern 발현분석에 의해 OsZF2 유전자가 형질전환체에서 과발현되는 것을 확인하였다. 형질전환체와 대조구인 낙동벼를 100 mM NaCl 첨가 MS 배지에서 키운 후 잎과 뿌리의 길이를 측정하여 내염성 검정을 수행한 결과 대조구에 비해 형질전환체 생육이 다소 양호 한 것으로 나타났다. GMO 포장에서 생육상태를 관찰 한 결과 형질전환체는 생육지연으로 인한 왜화 현상을 나타내며 출수기 또한 열흘 정도 지연되나 등숙기에는 대조구와 같은 초장을 보였다. zinc finger 유전자는 식물체의 발달과 분화 단계 및 환경 스트레스 반응 등 중요한 역할을 하는 것으로 알려져 있으므로 유전체발현 분석으로 하위단계에서 조절되는 유전자 발현 양상을 분석하였다. 35S:OsZF2 전환체에서 낙동벼보다 4배 이상 발현이 증가된 유전자 중에서 게놈 주석에 기초한 기능을 유추하면 신호전달과 관련된 protein kinase, DNA 결합단백질과 대사에 관련된 효소 유전자, 스트레스 반응에 관여하는 일부 유전자 및 병 저항성과 관련된 유전자들의 발현이 증가되었다. 따라서 벼에서 분리된 OsZF2 CCCH type zinc finger 유전자는 벼 성장 발달과 스트레스에 반응하는 상위 조절자로서 기능을 할 것으로 추측된다.

Keywords

References

  1. Addepalli B, Hunt AG (2008) Ribonuclease activity is a common property of Arabidopsis CCCH-containing zinc-Finger proteins. FEBS Lett 582:2577-82 https://doi.org/10.1016/j.febslet.2008.06.029
  2. Eom H, Lee CG, Jin E (2006) Gene expression profile analysis in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray. Planta 223:1231-1242 https://doi.org/10.1007/s00425-005-0171-2
  3. Jung J, Won SY, Suh SC, Kim H, Wing R, Jeong Y, Hwang I, Kim M (2007) The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta 225:575-88 https://doi.org/10.1007/s00425-006-0373-2
  4. Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, Chun HJ, Yun DJ, Hong JC, Lee SY, Ljm CO, Cho MJ (2006) A novel cold-inducible zinc finger protein from soybean, SCOF-l, enhances cold tolerance in transgenic plants. Plant J 25:247-59 https://doi.org/10.1046/j.1365-313x.2001.00947.x
  5. Kong Z, Li M, Yang W, Xu W, Xue Y (2006) A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol 141:1376-88 https://doi.org/10.1104/pp.106.082941
  6. Lee JS, Yoon IS, Yoon UH, Lee GS, Byun MO, Suh SC (2009) Two CCCH type zinc-finger protein genes responsive to cold stress in rice. (Manuscript in preparation)
  7. Li Z, Thomas TL (1998) PEI1, an embryo-specific zinc finger protein gene required for heart-stage embiyo formation in Arabidopsis. Plant Cell 10:383-98 https://doi.org/10.1105/tpc.10.3.383
  8. Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, Chong K (2007) Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta 226:1007-16 https://doi.org/10.1007/s00425-007-0548-5
  9. Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982-93 https://doi.org/10.1111/j.1365-313X.2004.02100.x
  10. Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617-30 https://doi.org/10.1111/j.1365-313X.2007.03168.x
  11. Oh SJ, Kwon CW, Choi DW, Song SI, Kim JK (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J 5:646-56 https://doi.org/10.1111/j.1467-7652.2007.00272.x
  12. Rabbani MA, Maruyarna K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755-67 https://doi.org/10.1104/pp.103.025742
  13. Ramos SB, Stumpo DJ, Kennington EA, Phillips RS, Bock CB, Ribeiro-Neto F, Blackshear PJ (2004) The CCCH tandem Zincfinger protein Zfp3612 is crucial for female fertility and early embryonic development. Development 131:4883-93 https://doi.org/10.1242/dev.01336
  14. Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, Li C (2007) The CCCH-type zinc finger proteins AtSZF1 and AtSZFZ regulate salt stress responses in Arabidopsis. Plant Cell Physiol 48:1148-58 https://doi.org/10.1093/pcp/pcm088
  15. Thomashow MF (1999) PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571-599 https://doi.org/10.1146/annurev.arplant.50.1.571
  16. Wang D, Guo Y, Wu C, Yang G, U Y, Zheng C (2008) Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice. BMC Genomics 9:44 https://doi.org/10.1186/1471-2164-9-44
  17. Xu C, He C (2007) The rice OsLOL2 gene encodes a zinc finger protein involved in rice growth and disease resistance. Mol Genet Genomics 278:85-94 https://doi.org/10.1007/s00438-007-0232-2
  18. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781-803 https://doi.org/10.1146/annurev.arplant.57.032905.105444
  19. Zhang S, Chen C, Li L, Meng L, Singh J, Jiang N, Deng XW, He ZH, Lemaux PG (2005) Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family Plant Physiol. 139:1107-24 https://doi.org/10.1104/pp.105.069005