References
- Alsheikh MK, Heyen BJ, Randall SK (2003) lon binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem 278:40882-40889 https://doi.org/10.1074/jbc.M307151200
- Baker J, Steele C, Dure LIII (1998) Sequence and characterization of lea proteins and their genes from cotton. Plant Mol Biol 11:277-291 https://doi.org/10.1007/BF00027385
- Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035-1040 https://doi.org/10.1104/pp.103.4.1035
- Chung E , Cho C-W, Kim K-Y, Kim K, Soh H-A, Lee S-W, Lee Y-C, Kim K, Chung Y-S, Lee J-H (2008) Enhanced tolerance against osmotic stresses of Escherichia coli cells expressing soybean KS-type dehydrin. Genes and Genomics 30:319-327
- Close TJ (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol Plant 100:291-296 https://doi.org/10.1111/j.1399-3054.1997.tb04785.x
- Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
- Ercal N, Guerer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metalinduced oxidative damage. Curr Top Med Chem 1:529-539 https://doi.org/10.2174/1568026013394831
- Freeman JL, Persans MW, Nieman K, Salt DE (2005) Nickel and cobalt resistance engineered in Escherichia coli by over expression of serine acetyltransferase from hyperaccumulator plant Thlaspi goesingense. Applied and Environ Microbiol 71:8627-8633 https://doi.org/10.1128/AEM.71.12.8627-8633.2005
- Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290-298
- Hara M, Fujinaga M, Kuboi T (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42:657-662 https://doi.org/10.1016/j.plaphy.2004.06.004
- Hara M, Fujinaga M, Kuboi T (2005) Metal binding by citrus dehydrin with histidine-rich domains. J Exp Bot 56:2695-2703 https://doi.org/10.1093/jxb/eri262
- Imai R, Chang L, Ohta A, Bray E A, Takagi M. (1996) A LEA-class gene of tomato confers salt and freezing tolerance when expressed in Saccharaomyces cerevisiae. Gene 170:243-248 https://doi.org/10.1016/0378-1119(95)00868-3
- Kruger C, Berkowitz O, Stephan UW, Hell R. (2002) A metalbinding member of the late embryogensis abundant protein family transports iron in the phloem of Richinus communis L. J Biol Chem 277:25062-25069 https://doi.org/10.1074/jbc.M201896200
- Motredame C, Higgins D, Heringa J. (2000) A novel method for multiple sequence aligments. J Mol Biol 302:205-217 https://doi.org/10.1006/jmbi.2000.4042
- Parvanova D, Ivanov S, Konstantinova T, Karanov E, Atanassov A, Tsvetkov T, Alexieva V, Djilianov D (2004) Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem 42:57-63 https://doi.org/10.1016/j.plaphy.2003.10.007
- Puhakainen T, Hess MW, Makela P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743-453 https://doi.org/10.1023/B:PLAN.0000040903.66496.a4
- Rorat T (2006) Plant dehydrins - tissue location, structure and function. Cell Mol Biol Lett 11:536-556 https://doi.org/10.2478/s11658-006-0044-0
- Shure, M., Wessler, S., Fedoroff, N (1983) Molecular identification and isolation of Waxy locus in maize. Cell 35:225-233 https://doi.org/10.1016/0092-8674(83)90225-8
- Svensson J, Palva ET, Welin B (2000) Purification of recombinant Arabidopsis thaliana dehydrins by metal ion affinity chromatography. Protein Expre Purif 20:169-178 https://doi.org/10.1006/prep.2000.1297
- Zhang Y, Li J, Yu F, Cong L, Wang L, Burkard G, Chai T (2006) Cloning and expression analysis of SKn-type dehydrin gene from bean in response to heavy metals. Mol Biotech 32:205-217 https://doi.org/10.1385/MB:32:3:205
Cited by
- Transgenic creeping bentgrass plants expressing a Picea wilsonii dehydrin gene (PicW) demonstrate improved freezing tolerance pp.1573-4978, 2018, https://doi.org/10.1007/s11033-018-4304-7